Innovating Works

DYNAMISM

Financiado
Dynamic Properties of Ferroelectric III V MOSFETs
The discovery of ferroelectric characteristics in annealed HfO2–based films opens a wide range of applications not only in memory and logic, but the results will enable new scientific directions for instance in reconfigurable elec... The discovery of ferroelectric characteristics in annealed HfO2–based films opens a wide range of applications not only in memory and logic, but the results will enable new scientific directions for instance in reconfigurable electronics. So far, ferroelectric films have been investigated in metal-insulator-metal structures suitable for back-end-of-line integration. They have also been introduced onto Si and two-dimensional materials. However, there is a gap of knowledge with lack of science and technology for integration of HfO2–based ferroelectric films on III-V channel materialswhere the increased permittivity will improve electrostatics. III-V transistors hold a key position for high-performance millimetre wave electronics. The high electron mobility in III-V materials contributes to a high transconductance that enables high unity-current-gain cut-off frequency and unity-power-gain cut-off frequency, fT and fmax, more than a factor 3 higher than competing Si MOSFET technologies. The wide options for heterostructure design have enabled III-V steep-slope transistors for low-power electronics operating down to 30 mV/dec without hysteresis . To research for the first time ferroelectric films integrated on high-performance III-V devices at technology-relevant dimensions, we will use our demonstrated integration of Hf0.5Zr0.5O2 on InAs: - Establishing the best strategy to integrate ferroelectric gate-stacks on III-V materials with strong polarization and long endurance. - Characterizing the dynamic properties with non-volatile functionality of ferroelectric films integrated on III-V transistor channels. - Investigating ferroelectric III-V MOSFETs for future applications including millimeter-wave devices, cryogenic electronics, Negative Capacitance FET (NC-FET) circuitry, and Ferroelectric Tunnel Junctions (FTJs). Combined, the new science and technology will enable novel high-performance devices as well as reconfigurable millimetre-wave electronics. ver más
31/08/2026
3M€
Duración del proyecto: 62 meses Fecha Inicio: 2021-06-28
Fecha Fin: 2026-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-06-28
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-ADG: ERC ADVANCED GRANT
Cerrada hace 4 años
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
LUNDS UNIVERSITET No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5