Multiscale Investigations on Si integrable Ferroelectric Hafnia Zirconia Systems...
Multiscale Investigations on Si integrable Ferroelectric Hafnia Zirconia Systems From Fundamental Understanding to Everyday Electronics
Everyday electronic devices suffer from power-loss issues originating from leakage currents in the stand-by (OFF) mode, which dominate even more with miniaturization of transistors. The concept of negative capacitance on ferroelec...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-130453B-C21
ESCRITURA OPTICA EN MATERIALES FERROELECTRICOS COMPATIBLES C...
196K€
Cerrado
PDC2023-145874-I00
Materiales con funcionalidad eléctrica, magnética, óptica o...
180K€
Cerrado
OSE-Ferroelectrics
Overturning Size Effects in Ferroelectric Thin Films
162K€
Cerrado
DYNAMISM
Dynamic Properties of Ferroelectric III V MOSFETs
3M€
Cerrado
MAT2010-15365
CAPAS Y MULTICAPAS DELGADAS FERROELECTRICAS PARA DISPOSITIVO...
230K€
Cerrado
RYC-2017-22531
Materiales ferroeléctricos y antiferromagnéticos para la ele...
309K€
Cerrado
Información proyecto FERHAZ
Duración del proyecto: 26 meses
Fecha Inicio: 2018-02-21
Fecha Fin: 2020-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Everyday electronic devices suffer from power-loss issues originating from leakage currents in the stand-by (OFF) mode, which dominate even more with miniaturization of transistors. The concept of negative capacitance on ferroelectric (FE) materials, and consequently ferroelectric field-effect transistor (FEFET) provides a materials solution to achieve sharp-switching in FETs, and promises to be a breakthrough solution to reduce this OFF state leakage. The recent demonstrations of ferroelectricity in thin (<10 nm) Hafnia-based (HfO2) films, which are readily Si integrable is an encouraging news for FEFET technology. FEFETs have earlier eluded industrial applications owing to Si compatibility issues of well-known FE materials. FERHAZ tackles this new kind of ferroelectricity, starting from fundamental studies on its origin leading upto application oriented FEFET devices.
In FERHAZ, HfxZr1-xO2 (HZO) films with varying Zr content (x, doping) will be grown epitaxially on various substrates (strain-states) including Silicon, under various oxygen partial pressures (point-defects). The FE hysteresis, dielectric and piezoelectric response on these films will be measured, and will be correlated with atomic structure, symmetry, microstructure and chemistry analysis obtained via high-resolution STEM and spectroscopy. The best FE films on Si will be selected to study the phase-competition, FE and piezoelectric behavior in real time under strain and electric field via in situ TEM measurements. Lessons from these fundamental multiscale studies will be employed in the fabrication and optimal design of FEFET with small leakage.
FERHAZ will integrate my expertise on in situ microscopy with the extensive experience of the host-lab in FE thin-film growth and characterization. Importantly, the skills and training obtained will enable me to position myself as a leading young scientist in materials science, strengthening my career prospectives to be a future group leader.