Innovating Works

H2020

Cerrada
HORIZON-JTI-CLEANH2-2022-...
HORIZON-JTI-CLEANH2-2022-02-03: Validation of a high-performance hydrogen liquefier
ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed form of hydrogen is recommended as well). This makes it possible to transport hydrogen and store it in large quantities enabling the transport of hydrogen by road/ship from centralised/decentralised production unit to customers or even direct use of liquid hydrogen for on-board storage in the frame of heavy-duty mobility.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 31-05-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed form of hydrogen is recommended as well). This makes it possible to transport hydrogen and store it in large quantities enabling the transport of hydrogen by road/ship from centralised/decentralised production unit to customers or even direct use of liquid hydrogen for on-board storage in the frame of heavy-duty mobility.

Hydrogen liquefaction is an energy intensive process and current liquefaction plants rely on technologies and materials that need energy efficiency improvement and cost reduction to lower the overall hydrogen liquefaction cost and activate the LH2 market at a competitive price in the near future.

Project results are expected to contribute to all of the following expected outcomes:

Development an innovative hydrogen liquefaction sub-system (sub-modules, cycle or even equipment) that should: Demonstrate technical and economic improvements with a potential for scaling-up Be capable of reducing the energy consumption and specific cost of hydrogen liquefaction Prepare/initiate the massive deplo... ver más

ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed form of hydrogen is recommended as well). This makes it possible to transport hydrogen and store it in large quantities enabling the transport of hydrogen by road/ship from centralised/decentralised production unit to customers or even direct use of liquid hydrogen for on-board storage in the frame of heavy-duty mobility.

Hydrogen liquefaction is an energy intensive process and current liquefaction plants rely on technologies and materials that need energy efficiency improvement and cost reduction to lower the overall hydrogen liquefaction cost and activate the LH2 market at a competitive price in the near future.

Project results are expected to contribute to all of the following expected outcomes:

Development an innovative hydrogen liquefaction sub-system (sub-modules, cycle or even equipment) that should: Demonstrate technical and economic improvements with a potential for scaling-up Be capable of reducing the energy consumption and specific cost of hydrogen liquefaction Prepare/initiate the massive deployment of liquid hydrogen for the benefit of heavy-duty transport with zero emission.Impact on a positive manner other hydrogen Europe Roadmaps related to liquid hydrogen (transportations, usages as aviation, HRS) Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA:

To increase the efficiency and reduce the costs of hydrogen liquefaction technologies.To contribute to the roll-out of next generation liquefaction technology to new bulk hydrogen production plants. In terms of technical KPIs the project should aim at achieving the following:

Reducing the H2 liquefaction energy intensity to 8-10kWh/kg H2 Reducing H2 liquefaction cost to <1.5€/kg
Scope:A hydrogen liquefaction process is composed of the following main technological sub-systems: Pre-cooling, Cooling, Coldbox (Heat exchangers, ortho-para conversion), turbines and finally boil-off gas management.

There are currently various challenges associated to the production of low-cost liquid hydrogen:

Only few developments working on optimising hydrogen cycles at a high TRL have been proposed;Current hydrogen energy consumption for liquefaction is around 10 to 12 kWh/kg equivalent to 35% of the hydrogen energy content on LHV vs power basis;Market development and cost strategies need to be developed for viable business models to promote LH2 product as an effective way of transporting hydrogen or eventually as a fuel;There are no uniform standards and safety regulations for liquid hydrogen. To overcome the technological barriers of hydrogen liquefaction and to prepare a future massive industrial deployment at a high TRL, the high-performance hydrogen sub-system to be developed in proposals should address the following technical issues:

An innovative concept different from what is used today. This can be focused at the system level or on one of the sub-system of a liquefaction unit;Construction of an industrial prototype at limited scale;Evaluate the performance, durability and efficiency of the prototype;Demonstrate the capability of the concept to be operated at lower load (in the range 50-100% of the nominal capacity) to be in line with future of renewable/low-carbon hydrogen production -e.g. by water electrolysis coupled with renewable electricity);Demonstrate according to the industrial prototype operation the H2 liquefaction energy intensity target between 8 - 10 kWh/kg considering feed hydrogen at 20 bar and 15 °C;The validated industrial prototype should prove and support the scalability of the innovative concept to suit flowrates above 100 TPD.TRL start of the project: 3 and TRL at the end of the project: 5 The proposed technology to be developed should be benchmarked against the technologies commercially available today based on the Helium Brayton Cycle and the Claude Cycle, both with externally supplied liquid inert nitrogen (LIN) for precooling on a small scale and should demonstrate a lower energy consumption.

Proposals should also address the following economic and regulatory issues:

The innovative concept should demonstrate a specific liquefaction cost at around 1 to 2 €/kg for a small scale unit;The project should define a suitable roadmap to prepare the deployment of low carbon liquid hydrogen solutions;The project should address safety aspects of supplies of liquid hydrogen (infrastructure aspects);Propose accurate business models for the scale-up of the industrial phase for commercialisation purposes;Assess the various advantages of using renewable liquid hydrogen in heavy-duty mobility in terms of emission reduction compared to tradition fuels including the boil-off management for the overall supply chain;Asses the various advantages of using renewable liquid hydrogen to valorise renewable energy used for the production of renewable hydrogen in an off-grid configuration;Contribute to the development of regulations, codes and standards needed for the LH2 safety issues;Define training requirements for operators in regards to LH2 safety operations. Proposals are expected to address sustainability and circularity aspects.

Activities are expected to start at TRL 3/4 and achieve TRL 5 by the end of the project.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed form of hydrogen is recommended as well). This makes it possible to transport hydrogen and store it in large quantities enabling the transport of hydrogen by road/ship from centralised/decentralised production unit to customers or even direct use of liquid hydrogen for on-board storage in the frame of heavy-duty mobility. ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed form of hydrogen is recommended as well). This makes it possible to transport hydrogen and store it in large quantities enabling the transport of hydrogen by road/ship from centralised/decentralised production unit to customers or even direct use of liquid hydrogen for on-board storage in the frame of heavy-duty mobility.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.