Innovating Works

H2020

Cerrada
HORIZON-JTI-CLEANH2-2022-...
HORIZON-JTI-CLEANH2-2022-02-10: Implementing new/optimised refuelling protocols and components for high flow HRS
ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and goods. To achieve this effectively, hydrogen refuelling station (HRS) technologies need to be upgraded to address the refuelling needs of heavy-duty vehicles. The actions described herein will contribute to bring appropriate HDV HRS and HDV HRS components on the market.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 31-05-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and goods. To achieve this effectively, hydrogen refuelling station (HRS) technologies need to be upgraded to address the refuelling needs of heavy-duty vehicles. The actions described herein will contribute to bring appropriate HDV HRS and HDV HRS components on the market.

Project results are expected to contribute to all of the following expected outcomes:

Fully developed and ready to commercialise HRS components (nozzle, hose, cooling unit, safety critical devices, pressure regulator or flow control valve, filters, advanced safety-related communication interface, flow meter etc) meeting the refuelling needs of HDV;Certification of the above-mentioned components according to relevant ISO, OIML or CEN standards. If related standard is still under development, contribution to standard writing in order to ensure components compatibility with future and enable certification in the short term; Demonstration of the fully integrated chain of specific HDV HRS components on at least 2 different HDV HRS for a total of 300 refuelli... ver más

ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and goods. To achieve this effectively, hydrogen refuelling station (HRS) technologies need to be upgraded to address the refuelling needs of heavy-duty vehicles. The actions described herein will contribute to bring appropriate HDV HRS and HDV HRS components on the market.

Project results are expected to contribute to all of the following expected outcomes:

Fully developed and ready to commercialise HRS components (nozzle, hose, cooling unit, safety critical devices, pressure regulator or flow control valve, filters, advanced safety-related communication interface, flow meter etc) meeting the refuelling needs of HDV;Certification of the above-mentioned components according to relevant ISO, OIML or CEN standards. If related standard is still under development, contribution to standard writing in order to ensure components compatibility with future and enable certification in the short term; Demonstration of the fully integrated chain of specific HDV HRS components on at least 2 different HDV HRS for a total of 300 refuelling events each;Full demonstration of new standardised refuelling protocols for heavy-duty vehicle developed in ISO TC 197 WG24 or other standardisation body, as well as approval concept for the conformity of the station to the protocol. Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA (Pillar 2: Hydrogen storage and distribution – Sub-pillar Hydrogen Refuelling Stations:

To tackle the technical challenges associated with heavy-duty hydrogen refuelling stations in order to develop a commercial solution that conforms to the heavy-duty requirements;To increase the reliability and availability of Hydrogen Refuelling Stations;To support the creation of a network of Heavy-duty HRS across Europe. In particular projects results are expected to contribute to the attainment by 2024 of the relevant KPIs identified in the SRIA of the Clean Hydrogen JU including:

HRS mean time between failures: 72 hours (700 bar) and 144 hours (350 bar);Annual maintenance cost: 0.5 €/kg (700 bar) and 0.35 €/kg (350 bar);HRS CAPEX(200 – 1000 kg/d): 1,5- 4 k€ / (kg/Day) @ 700 bar and 0.65-2.5 0.35 k€ / (kg/Day) @ 350 bar; In order to contribute to these KPI, the following additional KPI should be targeted:

The target price for the complete refuelling line downstream compressor and storage should be 300 k€ with following components target price for 50-100 unit/year: Nozzle 6 k€; Hose 2 k€; Advanced bidirectional communication interface: 2k€; Break away: 2.5 k€; Flow measuring device: 25 k€; Cooling system: 200 k€; Pressure regulator or flow control valve: 6 k€.
Scope:To fulfil future HDV refuelling needs such as fuelling a 100 kg HD truck storage system in 10 minutes, an HDV refuelling point should reach a mean fuelling rate of approximatively 170 g/s with a peak fuelling rate up to 300 g/s. To guarantee optimal refuelling performances, reliabilities and costs for a wide range of possible HDV storage capacities and configurations, new fuelling protocols based on advanced and safe communication between vehicle and station (e.g. the one developed in ISO TC 197 WG24 based notably on feedback from PRHYDE project[1]) should be implemented. To meet these requirements, proposals should develop, test and certify appropriate components to bring them to commercialisation.

Proposals should address:

Qualification of the components:Identify the gaps in terms of standards, market availability and testing;Perform a qualification roadmap individual for each component, with specific targets;At the end of the project, identify potential missing gaps, components, experience to be continued before full market implementation.Qualification of the protocol:Implement the components developed in the qualification program or potential alternativesDefine a refueling protocol validation roadmap, accounting for available standardsCheck that each component performs as expected in a full assemblyValidate the protocol on various testingDissemination of the outcomes; During the project, those of the following components that are not available on the market should be developed, tested, certified and brought to commercialisation:

Nozzle, break away and hose: H70 and H35 very high flow nozzle, break away and hose should be designed for 300 g/s peak flow. A particular attention should be paid to limit pressure drop and heat transfer from the surrounding atmosphere. The project should contribute from the beginning of the project to ISO TC 197/WG5 and WG22 currently working on a new version of ISO 17268 and ISO 19880-5. The components developed should be certified according to previously mentioned standard if published before the end of the project. The feedback on current components drawbacks (size, weight and manoeuvrability, freezing preventing disconnection of nozzle at the end of the refuelling, fragility when dropped, life duration) should be considered.Advanced bidirectional communication interface (HRS and vehicle side): Optimised refuelling protocol able to address a wide range of on-board storage systems and configurations will need an advanced communication interface between vehicles and stations, sufficiently reliable to allow communicated data to be used for safety critical decision in the refuelling protocol. The interface should be developed in collaboration with major European HDV manufacturers. The project should contribute as soon as possible to ISO TC 197 WG24 Task force 2 working on ISO 19885-2 standard on the definition of communications between the vehicle and dispenser control systems.Flow measuring device: The project should develop a flow meter compatible with high flow rate (170 g/s mean flow rate, 300 g/s peak flow, targeting >100kg total mass per refuelling) for H35 and H70. An entire measuring device (including flow meter, calculator etc) ready to be implemented on a dispenser should be developed and certified according to OIML R139.Cooling system: The cooling system should be able to cool hydrogen to obtain a hydrogen temperature at the dispenser of -20°C or below, for a mean fuelling rate of 170 g/s with peak flow of 300 g/s. During design phase the balance between refuelling performance versus the cost (CAPEX and OPEX) of the cooling system should be studied. Particular attention should be paid to reducing the footprintPressure Regulator or Flow Control Valve: The component should be able to control the pressure ramp rate or the flow appropriately to follow new refuelling protocols and manage corresponding range of flow/pressure variations. A focus should be paid to reaching the needed reliability of valves.Safety critical devices, valve, filter and other components: The project may develop any specific components of the refuelling line downstream compressor and storage that is not available on the market with characteristic suitable for HDV refuelling. Particular attention should be paid to reach sufficient flow coefficient to limit pressure drop throughout the whole system. Special focus should be paid to reach high reliability throughout the fuelling system. Development of efficient and long-life filters to keep contamination and wear to a minimum will be necessary and investigated as during the project.Dispenser: Most of the above-mentioned component should be integrated in a dispenser that should follow ISO 19880-2. The project should also pay attention to propose standardised integration and sizes of the dispenser in a logic of one fit all. The targeted rated pressure of the developed components should be at least 138% of the nominal working pressure following the recommendation of chapter 8 of ISO 19880-1. The component shall be developed within the first 2.5 years of the project to allow 1.5 years for integration and testing in a full refuelling line assembly.

During the project, a fully integrated component chain from pressure regulator to nozzle and associated control command should be designed and built and should be integrated on at least two HRS having storage and/or compression capability allowing several 100 kg HDV onboard storage per day. A testing phase of at least 6 months under relevant operating conditions should take place during the project. Full experimental set up details and experimental data of the tests should be made publicly accessible at the end of the project.

HRS architecture may be based on direct compression or transfer from high-pressure cascade storage, but these components (compressor and storage) are not the focus of the scope of this action and only a minor share of project funding should be related to storage, compressor and further station adaptations. The control command of these HRS should integrate new HDV refuelling protocols currently under development in ISO TC 197 WG24 or other standardisation bodies. The project should take part as soon as possible to ISO TC 197 WG24 task force 3 working on ISO 19885-3 technical document on new high flow refuelling protocols to better understand these protocols and contribute with feedback on implementation challenges. This project should benefit from the work previously carried out by the PRHYDE[1] project on HDV refuelling protocols.

The project should assess hazard and associated risk of refuelling with the developed fuelling line and should benefit from, but also provide added value compared to the work previously carried out by the MultHyFuel[1] project on the safety considerations for the HRS design.

Applicants are encouraged to involve component manufacturers, HRS manufacturers, HRS operators and heavy-duty vehicle manufacturers.

Activities are expected to start at TRL 3 and achieve TRL 6 by the end of the project.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.


[1]https://www.clean-hydrogen.europa.eu/projects-repository_en

[2]https://www.clean-hydrogen.europa.eu/projects-repository_en

[3]https://www.clean-hydrogen.europa.eu/projects-repository_en

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and goods. To achieve this effectively, hydrogen refuelling station (HRS) technologies need to be upgraded to address the refuelling needs of heavy-duty vehicles. The actions described herein will contribute to bring appropriate HDV HRS and HDV HRS components on the market. ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and goods. To achieve this effectively, hydrogen refuelling station (HRS) technologies need to be upgraded to address the refuelling needs of heavy-duty vehicles. The actions described herein will contribute to bring appropriate HDV HRS and HDV HRS components on the market.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-JTI-CLEANH2-2022-1 Implementing new/optimised refuelling protocols and components for high flow HRS ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and g...
Sin info.
HORIZON-JTI-CLEANH2-2022-01-08 Integration of multi-MW electrolysers in industrial applications
en consorcio: ExpectedOutcome:This flagship[1] project is expected to pave the way for further large-scale integration of electrolyser systems in industri...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-01 Design and industrial deployment of innovative manufacturing processes for fuel cells and fuel cell components
en consorcio: ExpectedOutcome:Fuel cells offer the highest electrical efficiency for conversion of chemically stored energy. They can significantly contri...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-11 Development and demonstration of mobile and stationary compressed hydrogen refuelling solutions for application in inland shipping and short-distance maritime operations
en consorcio: ExpectedOutcome:Hydrogen and hydrogen derivative fuels are expected to play a vital role in enabling the decarbonisation of shipping and mar...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-10 Demonstrating offshore production of green hydrogen
en consorcio: ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] e...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-05 Scaling up of cells and stacks for large electrolysers
en consorcio: ExpectedOutcome:This topic concerns the research and development of much larger cells and stacks for water electrolysers than the current St...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-01 Compatibility of Distribution non-steel metallic gas grid materials with hydrogen
en consorcio: ExpectedOutcome:In its strategic vision for a climate-neutral EU (to meet the carbon neutrality in 2050) presented by the European Commissio...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-06-01 Hydrogen Valleys (large-scale)
en consorcio: ExpectedOutcome:Building on the successful experience of previous years (Hydrogen Valleys in the FCH 2 JU call 2019 and Hydrogen Islands in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-05 Efficient system for dehydrogenation of liquid organic hydrogen carriers for application to long distance transportations
en consorcio: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-06-02 Hydrogen Valleys (small-scale)
en consorcio: ExpectedOutcome:Building on the successful experience of previous years (Hydrogen Valleys in the FCH 2 JU call 2019 and Hydrogen Islands in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-04 Ammonia to Green Hydrogen: efficient system for ammonia cracking for application to long distance transportations
en consorcio: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-06 Development of large scale LH2 containment for shipping
en consorcio: ExpectedOutcome:An important element of the European Hydrogen strategy is to support liquid hydrogen(LH2) deployment for various usages and...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-03 Safe hydrogen injection management at network-wide level: towards European gas sector transition
en consorcio: ExpectedOutcome:To date, the approach taken to inject hydrogen in the gas networks is left to be defined on a local basis in terms of concen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-04 Design for advanced and scalable manufacturing of electrolysers
en consorcio: ExpectedOutcome:The huge leap expected in the evolution of water electrolyser technology can be performed only by reaching significant techn...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-01 Development and optimisation of reliable and versatile PEMFC stacks for high power range applications
en consorcio: ExpectedOutcome:Developing and deploying cost-competitive and mature Hydrogen Fuel Cell technology by 2030 is crucial for reaching EU’s aim...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-01 Public understanding of hydrogen and fuel cell technologies
en consorcio: ExpectedOutcome:Public and consumer understanding and acceptance will play a critical role in the successful future adoption of hydrogen and...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-02 Innovative and optimised MEA components towards next generation of improved PEMFC stacks for heavy duty vehicles
en consorcio: ExpectedOutcome:Hydrogen as fuel in transportation has significant advantages compared to pure battery electric propulsion, especially for h...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-02 Hydrogen and H2NG leak detection for continuous monitoring and safe operation of HRS and future hydrogen/H2NG networks
en consorcio: ExpectedOutcome:The growing attention on methane emissions is also triggering a debate around the safety of hydrogen. Although different in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-04 Development of validated test methods and requirements for measuring devices intended for measuring NG/H2 mixtures
en consorcio: ExpectedOutcome:No validated test methods for measuring devices used in the distribution and transmission of hydrogen-enriched natural gas c...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-02 Ammonia powered fuel cell system focusing on superior efficiency, durable operation and design optimisation
en consorcio: ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-08 Development of novel or hybrid concepts for reliable, high capacity and energy-efficient H2 compression systems at real-world scale
en consorcio: ExpectedOutcome:Interest for hydrogen as an energy carrier is growing and receiving support in different sectors at an unprecedented rate. M...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-02 Development and validation of pressurised high temperature steam electrolysis stacks (Proton Conducting Ceramic Electrolysis)
en consorcio: ExpectedOutcome:Hydrogen is stored, transported or used pressurised with variable pressures depending on user cases, e.g., between 7 and 70...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-04 LH2 tanks for heavy-duty vehicles
en consorcio: ExpectedOutcome:Commercial trucks are responsible for a quarter of road transport CO2 emissions. For the decarbonisation of lighter and heav...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-02 Safety of cryogenic hydrogen transfer technologies in public areas for mobile application
en consorcio: ExpectedOutcome:International regulations addressing CO2 emissions are forcing all industries to rethink their processes to become more sust...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-07-01 Addressing the sustainability and criticality of electrolyser and fuel cell materials
en consorcio: ExpectedOutcome:Electrolyser and fuel cell technologies have reached a level of maturity but still depend heavily on critical raw materials...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-05 Large scale demonstration of hydrogen fuel cell propelled inland waterway vessels
en consorcio: ExpectedOutcome:The total volume of goods transported via inland waterways through the 27 European Union countries was 523 million tonnes in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-01 Development and validation of pressurised high temperature steam electrolysis stacks (Solid Oxide Electrolysis)
en consorcio: ExpectedOutcome:Hydrogen is stored, transported or used pressurised with variable pressures depending on user cases (e.g. between 7 and 70 b...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-06 Efficiency boost of solar thermochemical water splitting
en consorcio: ExpectedOutcome:In order to ramp up renewable hydrogen production in the future, a suitable portfolio of diverse technologies is needed to s...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-08 Development and optimisation of a dedicated Fuel Cells for Aviation: disruptive next-gen high temperature Fuel Cells technology for future aviation
en consorcio: ExpectedOutcome:The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) a...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-03 Development of low temperature water electrolysers for highly pressurised hydrogen production
en consorcio: ExpectedOutcome:The current generation of Low Temperature Water Electrolysers (LT-WE) are demonstrated on a large scale and are ready for ma...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-07 Bringing green hydrogen MW scale off grid installations closer to technical and financial maturity
en consorcio: ExpectedOutcome:Off-grid locations offer an attractive opportunity to incorporate new Renewable Energy Sources (RES) into the energy system...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-07 Increased hydrogen capacity of GH 2 road trailers
en consorcio: ExpectedOutcome:Due to its low volumetric density, hydrogen presents major challenges for transportation and distribution. Currently, compre...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-06 Development and optimisation of a dedicated Fuel Cells for Aviation: from dedicated stack (100s kW) up to full system (MWs)
en consorcio: ExpectedOutcome:The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) a...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-09 Scaling-up technologies for SOEL
en consorcio: ExpectedOutcome:To decarbonise industries, but also as an energy vector, hydrogen can play a major role, but its production needs to be scal...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-03 Validation of a high-performance hydrogen liquefier
en consorcio: ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed f...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-03 Large scale demonstration of European H2 Heavy Duty Vehicle along the TEN-T corridors
en consorcio: ExpectedOutcome:Hydrogen has proven to be the alternative to conventional ICE operated on fossil fuels, especially for long range and flexib...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-07 Development of specific aviation cryogenic storage system with a gauging, fuel metering, heat management and monitoring system
en consorcio: ExpectedOutcome:To fulfil the ambitions of a commercial zero emission aircraft a liquid hydrogen (LH2) fuel storage system is needed. In the...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-05 Research & Innovation co-operation with Africa on hydrogen
en consorcio: ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes: Reinforce the activities in the long...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-10 Implementing new/optimised refuelling protocols and components for high flow HRS
en consorcio: ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and g...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-03 Reversible SOC system development, operation and energy system (grid) integration
en consorcio: ExpectedOutcome:Reversible Solid Oxide systems (rSOC) have a huge scope in the stationary energy sector because both power generation, in Fu...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-09 Sampling methodology and quality assessment of HRS
en consorcio: ExpectedOutcome:In order to contribute to the 2030 Climate plan, the ‘Fit for 55’ climate action plan and Green Deal, it is of the utmost im...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-04 Dry Low NOx combustion of hydrogen-enriched fuels at high-pressure conditions for gas turbine applications
en consorcio: ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieve...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de