Innovating Works

H2020

Cerrada
HORIZON-JTI-CLEANH2-2022-...
HORIZON-JTI-CLEANH2-2022-01-10: Demonstrating offshore production of green hydrogen
ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] expects renewable energy projects to become increasingly important in most sea basins in Europe, including innovative projects such as offshore hydrogen production. Hydrogen may be produced offshore by achieving an association between wind turbines and electrolysers by various approaches. These include retrofitting an electrolyser to an existing oil & gas platform, building a renewable hydrogen production hub on a man-made island, building a new platform close to a wind farm, or integrating the electrolyser and wind turbine into one offshore assembly. The electricity may be supplied via a private wire, a grid connection, or off-grid. Moreover, offshore produced hydrogen may be exported via existing repurposed or new pipelines (gas blended or pure hydrogen) or by dedicated ships; and a platform may be used for grid balancing and for refuelling ships offshore.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 20-09-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] expects renewable energy projects to become increasingly important in most sea basins in Europe, including innovative projects such as offshore hydrogen production. Hydrogen may be produced offshore by achieving an association between wind turbines and electrolysers by various approaches. These include retrofitting an electrolyser to an existing oil & gas platform, building a renewable hydrogen production hub on a man-made island, building a new platform close to a wind farm, or integrating the electrolyser and wind turbine into one offshore assembly. The electricity may be supplied via a private wire, a grid connection, or off-grid. Moreover, offshore produced hydrogen may be exported via existing repurposed or new pipelines (gas blended or pure hydrogen) or by dedicated ships; and a platform may be used for grid balancing and for refuelling ships offshore.

This topic calls for a flagship project demonstration at multi-MW scale, >5MW, of the feasibility of offshore renewable hydrogen production. This may be achieved... ver más

ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] expects renewable energy projects to become increasingly important in most sea basins in Europe, including innovative projects such as offshore hydrogen production. Hydrogen may be produced offshore by achieving an association between wind turbines and electrolysers by various approaches. These include retrofitting an electrolyser to an existing oil & gas platform, building a renewable hydrogen production hub on a man-made island, building a new platform close to a wind farm, or integrating the electrolyser and wind turbine into one offshore assembly. The electricity may be supplied via a private wire, a grid connection, or off-grid. Moreover, offshore produced hydrogen may be exported via existing repurposed or new pipelines (gas blended or pure hydrogen) or by dedicated ships; and a platform may be used for grid balancing and for refuelling ships offshore.

This topic calls for a flagship project demonstration at multi-MW scale, >5MW, of the feasibility of offshore renewable hydrogen production. This may be achieved by either re-using existing offshore electricity/oil/gas infrastructure or using new infrastructure, to export energy as hydrogen rather than electricity and so support the greater integration of renewable power sources into the energy system. It is expected that the electrolyser operation will closely follow the wind power generation profile. This will be one of the first worldwide demonstrations of an offshore multi-MW system integration for renewable hydrogen production and export/use.

Project results are expected to contribute to all of the following outcomes:

Achievement of a step change regarding experience with the additional safety aspects of hydrogen production offshore and export/use, de-risking future projects and investments;Determination of the long-term performance of an offshore electrolyser in terms of integration capabilities, efficiencies, systems balancing, performance degradation, corrosion management and operational costs;Evaluation and demonstration of operational, inspection and maintenance requirements of offshore electrolysis process;Building upon existing experience and research into suitable offshore renewable hydrogen infrastructures and expanding this knowledge; Enabling further roll-out of offshore renewable hydrogen production and export/use;Acting as a stepping stone for dedicated offshore electrolysis coupled with windfarms, transporting renewable energy as renewable hydrogen, or the offshore use of renewable hydrogen;Provide relevant experience to retrofitting existing electricity/oil/gas offshore infrastructure demonstrating their feasibility and cost competitiveness in the long run. Proposals should aim to improve understanding of the technical, economic, regulatory and operational benefits and hurdles of producing and exporting offshore renewable hydrogen with direct connection to offshore windfarms.

Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA:

AEL, Electricity consumption @ nominal capacity( kWh/kg) 49, Degradation (%/1,000h) 0.11, Hot idle ramp time (sec) 30, Cold start ramp time (sec) 900;PEMEL, Electricity consumption @ nominal capacity( kWh/kg) 52, Degradation (%/1,000h) 0.15, Hot idle ramp time (sec) 1, Cold start ramp time (sec) 10.
Scope:This Innovation Action flagship[2] topic will aim to demonstrate offshore production and export/use of hydrogen as a first multi-MW step towards large-scale offshore renewable hydrogen production. The scope covers process design, engineering, construction, procurement, integration with offshore infrastructure and operation of a >5MW electrolysis system at an offshore setting. This can include the supply of renewable electricity, water at the required specification as well as cooling, drying, compression, storages, pipelines and other auxiliaries required to convey and utilise the hydrogen. Accordingly, the project will incur substantial integration costs, both upstream and downstream of the electrolyser, in addition to the costs of the offshore electrolyser itself.

Proposals should address the following:

Deployment of a system that is designed to be remotely controlled, monitored and autonomously operated to minimise operational costs, while also allowing ready access for essential maintenance purposes;Evaluation of the operational, inspection and maintenance requirements of offshore electrolysis systems;Operation of the offshore electrolyser and hydrogen export/storage/use for two complete seasonal cycles (24 months). Projects should record all relevant operating data (e.g.: electricity input, hydrogen production and export, system degradation, system fault/trips and root cause analysis) to allow the feasibility of offshore renewable electrolysis to be fully assessed; Determination of the performance of the offshore electrolyser in terms of efficiency, performance degradation, operational and maintenance costs; If relevant to the electrolyser site, an assessment of economic impact of re-using existing offshore infrastructure compared with developing new offshore infrastructure. KPIs regarding accommodation ratios (MW/m²), cost of installed production (€/MW), etc, shall be defined as appropriate in the proposals to build the assessment;A techno-economic comparison of the chosen approach to offshore hydrogen production and transport by pipeline with an otherwise similar approach on land that is based on onshore wind power;Assessment of the efficient use of the available renewable energy and of the best control strategies to optimise the plant performances based on the measured process operation data. For this purpose, proposals shall define KPIs regarding availability, efficiency, LCOH, etc; Assessment of the environmental impact in terms of avoided CO2 emissions resulting from the utilisation of the renewable hydrogen produced offshore. A preliminary estimation of the CO2 avoided emission is expected already in the proposal;Describe how learnings will be communicated and dissemination will occur beyond the consortium, including regions in Europe with significant potential for offshore renewable hydrogen production. The offshore conditions, stringent safety requirements, securing a renewable electricity supply, EPC requirements, and the difficult accessibility makes this call very challenging compared with land-based deployments of electrolysers in the electricity grid. Hence to address adequately the challenges of this project, the consortium should assess:

Technical and specific hydrogen expertise for the design, provision, integration, safety and operation of the offshore electrolysis process devices and associated hydrogen export/useThe necessary contractual and commercial expertise to market the hydrogen;The end-use of the produced and exported hydrogen;The potential sustainability of the deployed renewable production plant beyond the demonstration phase;Obtaining the necessary permitting and regulatory approvals as required for the timeframe of the project;Legal, safety and regulatory expertise related. Proposals are expected to demonstrate important additional technological advancement compared to the FCH JU project OYSTER[3].

This topic encourages the deployment of sustainable transportation of hydrogen methods by soliciting the planning of «medium range and backbone transmission infrastructures» in line with the “Hydrogen Strategy for a Climate Neutral Europe[4]”. In addition, it is important that the offshore production of hydrogen conforms with Europe’s general commitment to achieving and maintaining clean and healthy oceans by addressing the operation, recyclability, recovery and re-use of offshore electrolysers[5].

The following costs are considered to be eligible for funding: the design, development, procurement, integration and installation of the offshore electrolyser and its water supply; the electrolyser’s electricity connection; the auxiliary systems (including hydrogen storage and export infrastructure); the commissioning, operation and maintenance of the deployed system for the demonstration phase. Costs associated with offshore infrastructure acquisition or retrofitting, buying electricity and electricity grid levies for the demonstration phase are not eligible.

Applicants should be able to demonstrate the compatibility of their proposal with a wider perimeter, such as renewable electricity production, export/use means and/or platform infrastructure. Additional funding streams and match funding are encouraged.

This topic is expected to contribute to EU competitiveness and industrial leadership by supporting a European value chain for hydrogen and fuel cell systems and components.

Proposals should provide a preliminary draft on ‘hydrogen safety planning and management’ at the project level, which will be further updated during project implementation.

It is expected that Guarantees of origin (GOs) will be used to prove the renewable character of the hydrogen that is produced. In this respect consortium may seek out the issuance and subsequent cancellation of GOs from the relevant Member State issuing body and if that is not yet available the consortium may proceed with the issuance and cancellation of non-governmental certificates (e.g CertifHy[6]).

Activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with JRC (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols to benchmark performance and quantify progress at programme level.

Activities are expected to start at TRL 5 and achieve TRL 7 by the end of the project.

At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.


[1]https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0741&from=EN

[2]For definition of flagship see section 5.3. of the Clean Hydrogen JU Strategic Research and Innovation Agenda 2021 – 2027

[3]https://www.clean-hydrogen.europa.eu/projects-repository_en

[4]https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf

[5]

[6]https://www.certifhy.eu/

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] expects renewable energy projects to become increasingly important in most sea basins in Europe, including innovative projects such as offshore hydrogen production. Hydrogen may be produced offshore by achieving an association between wind turbines and electrolysers by various approaches. These include retrofitting an electrolyser to an existing oil & gas platform, building a renewable hydrogen production hub on a man-made island, building a new platform close to a wind farm, or integrating the electrolyser and wind turbine into one offshore assembly. The electricity may be supplied via a private wire, a grid connection, or off-grid. Moreover, offshore produced hydrogen may be exported via existing repurposed or new pipelines (gas blended or pure hydrogen) or by dedicated ships; and a platform may be used for grid balancing and for refuelling ships offshore. ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] expects renewable energy projects to become increasingly important in most sea basins in Europe, including innovative projects such as offshore hydrogen production. Hydrogen may be produced offshore by achieving an association between wind turbines and electrolysers by various approaches. These include retrofitting an electrolyser to an existing oil & gas platform, building a renewable hydrogen production hub on a man-made island, building a new platform close to a wind farm, or integrating the electrolyser and wind turbine into one offshore assembly. The electricity may be supplied via a private wire, a grid connection, or off-grid. Moreover, offshore produced hydrogen may be exported via existing repurposed or new pipelines (gas blended or pure hydrogen) or by dedicated ships; and a platform may be used for grid balancing and for refuelling ships offshore.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 6:. Representa un paso importante en demostrar la madurez de una tecnología. Se construye un prototipo de alta fidelidad que aborda adecuadamente las cuestiones críticas de escala, que opera en un entorno relevante, y que debe ser a su vez una buena representación del entorno operativo real. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar desde un 70% hasta un 100%.
The funding rate for IA projects is 70 % for profit-making legal entities and 100 % for non-profit legal entities. The funding rate for IA projects is 70 % for profit-making legal entities and 100 % for non-profit legal entities.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-JTI-CLEANH2-2022-2 Demonstrating offshore production of green hydrogen ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] e...
Sin info.
HORIZON-JTI-CLEANH2-2022-01-08 Integration of multi-MW electrolysers in industrial applications
en consorcio: ExpectedOutcome:This flagship[1] project is expected to pave the way for further large-scale integration of electrolyser systems in industri...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-01 Design and industrial deployment of innovative manufacturing processes for fuel cells and fuel cell components
en consorcio: ExpectedOutcome:Fuel cells offer the highest electrical efficiency for conversion of chemically stored energy. They can significantly contri...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-11 Development and demonstration of mobile and stationary compressed hydrogen refuelling solutions for application in inland shipping and short-distance maritime operations
en consorcio: ExpectedOutcome:Hydrogen and hydrogen derivative fuels are expected to play a vital role in enabling the decarbonisation of shipping and mar...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-10 Demonstrating offshore production of green hydrogen
en consorcio: ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] e...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-05 Scaling up of cells and stacks for large electrolysers
en consorcio: ExpectedOutcome:This topic concerns the research and development of much larger cells and stacks for water electrolysers than the current St...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-01 Compatibility of Distribution non-steel metallic gas grid materials with hydrogen
en consorcio: ExpectedOutcome:In its strategic vision for a climate-neutral EU (to meet the carbon neutrality in 2050) presented by the European Commissio...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-06-01 Hydrogen Valleys (large-scale)
en consorcio: ExpectedOutcome:Building on the successful experience of previous years (Hydrogen Valleys in the FCH 2 JU call 2019 and Hydrogen Islands in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-05 Efficient system for dehydrogenation of liquid organic hydrogen carriers for application to long distance transportations
en consorcio: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-06-02 Hydrogen Valleys (small-scale)
en consorcio: ExpectedOutcome:Building on the successful experience of previous years (Hydrogen Valleys in the FCH 2 JU call 2019 and Hydrogen Islands in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-04 Ammonia to Green Hydrogen: efficient system for ammonia cracking for application to long distance transportations
en consorcio: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-06 Development of large scale LH2 containment for shipping
en consorcio: ExpectedOutcome:An important element of the European Hydrogen strategy is to support liquid hydrogen(LH2) deployment for various usages and...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-03 Safe hydrogen injection management at network-wide level: towards European gas sector transition
en consorcio: ExpectedOutcome:To date, the approach taken to inject hydrogen in the gas networks is left to be defined on a local basis in terms of concen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-04 Design for advanced and scalable manufacturing of electrolysers
en consorcio: ExpectedOutcome:The huge leap expected in the evolution of water electrolyser technology can be performed only by reaching significant techn...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-01 Development and optimisation of reliable and versatile PEMFC stacks for high power range applications
en consorcio: ExpectedOutcome:Developing and deploying cost-competitive and mature Hydrogen Fuel Cell technology by 2030 is crucial for reaching EU’s aim...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-01 Public understanding of hydrogen and fuel cell technologies
en consorcio: ExpectedOutcome:Public and consumer understanding and acceptance will play a critical role in the successful future adoption of hydrogen and...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-02 Innovative and optimised MEA components towards next generation of improved PEMFC stacks for heavy duty vehicles
en consorcio: ExpectedOutcome:Hydrogen as fuel in transportation has significant advantages compared to pure battery electric propulsion, especially for h...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-02 Hydrogen and H2NG leak detection for continuous monitoring and safe operation of HRS and future hydrogen/H2NG networks
en consorcio: ExpectedOutcome:The growing attention on methane emissions is also triggering a debate around the safety of hydrogen. Although different in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-04 Development of validated test methods and requirements for measuring devices intended for measuring NG/H2 mixtures
en consorcio: ExpectedOutcome:No validated test methods for measuring devices used in the distribution and transmission of hydrogen-enriched natural gas c...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-02 Ammonia powered fuel cell system focusing on superior efficiency, durable operation and design optimisation
en consorcio: ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-08 Development of novel or hybrid concepts for reliable, high capacity and energy-efficient H2 compression systems at real-world scale
en consorcio: ExpectedOutcome:Interest for hydrogen as an energy carrier is growing and receiving support in different sectors at an unprecedented rate. M...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-02 Development and validation of pressurised high temperature steam electrolysis stacks (Proton Conducting Ceramic Electrolysis)
en consorcio: ExpectedOutcome:Hydrogen is stored, transported or used pressurised with variable pressures depending on user cases, e.g., between 7 and 70...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-04 LH2 tanks for heavy-duty vehicles
en consorcio: ExpectedOutcome:Commercial trucks are responsible for a quarter of road transport CO2 emissions. For the decarbonisation of lighter and heav...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-02 Safety of cryogenic hydrogen transfer technologies in public areas for mobile application
en consorcio: ExpectedOutcome:International regulations addressing CO2 emissions are forcing all industries to rethink their processes to become more sust...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-07-01 Addressing the sustainability and criticality of electrolyser and fuel cell materials
en consorcio: ExpectedOutcome:Electrolyser and fuel cell technologies have reached a level of maturity but still depend heavily on critical raw materials...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-05 Large scale demonstration of hydrogen fuel cell propelled inland waterway vessels
en consorcio: ExpectedOutcome:The total volume of goods transported via inland waterways through the 27 European Union countries was 523 million tonnes in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-01 Development and validation of pressurised high temperature steam electrolysis stacks (Solid Oxide Electrolysis)
en consorcio: ExpectedOutcome:Hydrogen is stored, transported or used pressurised with variable pressures depending on user cases (e.g. between 7 and 70 b...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-06 Efficiency boost of solar thermochemical water splitting
en consorcio: ExpectedOutcome:In order to ramp up renewable hydrogen production in the future, a suitable portfolio of diverse technologies is needed to s...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-08 Development and optimisation of a dedicated Fuel Cells for Aviation: disruptive next-gen high temperature Fuel Cells technology for future aviation
en consorcio: ExpectedOutcome:The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) a...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-03 Development of low temperature water electrolysers for highly pressurised hydrogen production
en consorcio: ExpectedOutcome:The current generation of Low Temperature Water Electrolysers (LT-WE) are demonstrated on a large scale and are ready for ma...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-07 Bringing green hydrogen MW scale off grid installations closer to technical and financial maturity
en consorcio: ExpectedOutcome:Off-grid locations offer an attractive opportunity to incorporate new Renewable Energy Sources (RES) into the energy system...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-07 Increased hydrogen capacity of GH 2 road trailers
en consorcio: ExpectedOutcome:Due to its low volumetric density, hydrogen presents major challenges for transportation and distribution. Currently, compre...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-06 Development and optimisation of a dedicated Fuel Cells for Aviation: from dedicated stack (100s kW) up to full system (MWs)
en consorcio: ExpectedOutcome:The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) a...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-09 Scaling-up technologies for SOEL
en consorcio: ExpectedOutcome:To decarbonise industries, but also as an energy vector, hydrogen can play a major role, but its production needs to be scal...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-03 Validation of a high-performance hydrogen liquefier
en consorcio: ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed f...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-03 Large scale demonstration of European H2 Heavy Duty Vehicle along the TEN-T corridors
en consorcio: ExpectedOutcome:Hydrogen has proven to be the alternative to conventional ICE operated on fossil fuels, especially for long range and flexib...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-07 Development of specific aviation cryogenic storage system with a gauging, fuel metering, heat management and monitoring system
en consorcio: ExpectedOutcome:To fulfil the ambitions of a commercial zero emission aircraft a liquid hydrogen (LH2) fuel storage system is needed. In the...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-05 Research & Innovation co-operation with Africa on hydrogen
en consorcio: ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes: Reinforce the activities in the long...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-10 Implementing new/optimised refuelling protocols and components for high flow HRS
en consorcio: ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and g...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-03 Reversible SOC system development, operation and energy system (grid) integration
en consorcio: ExpectedOutcome:Reversible Solid Oxide systems (rSOC) have a huge scope in the stationary energy sector because both power generation, in Fu...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-09 Sampling methodology and quality assessment of HRS
en consorcio: ExpectedOutcome:In order to contribute to the 2030 Climate plan, the ‘Fit for 55’ climate action plan and Green Deal, it is of the utmost im...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-04 Dry Low NOx combustion of hydrogen-enriched fuels at high-pressure conditions for gas turbine applications
en consorcio: ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieve...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de