Innovating Works

H2020

Cerrada
HORIZON-JTI-CLEANH2-2022-...
HORIZON-JTI-CLEANH2-2022-04-02: Ammonia powered fuel cell system focusing on superior efficiency, durable operation and design optimisation
ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level technology readiness levels (TRL) and demonstrated reliable durability in operation. However, today’s roadblock preventing fuel cells from winning a greater share of the power market is the lack of availability of affordable, carbon free, and easily transportable fuel. Against this background ammonia shows huge potential as hydrogen carrier. Liquid ammonia - with twice as much hydrogen as liquid hydrogen by volume and carbon-free formulation – unleashes a new dimension in fuel cells applications. Ammonia as a fuel in fuel cells can provide a great impact on de-fossilisation in all power consuming sectors of the global economy. A use of ammonia for industrial business-to-business (B2B) prime power and long-term backup power production provides opportunity for further decrease of carbon dioxide emissions in regions having easy access to this fuel.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 31-05-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Hace más de 30 mes(es) del cierre y aún no tenemos información sobre los proyectos financiados, no parece que se vaya a publicar esta información.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level technology readiness levels (TRL) and demonstrated reliable durability in operation. However, today’s roadblock preventing fuel cells from winning a greater share of the power market is the lack of availability of affordable, carbon free, and easily transportable fuel. Against this background ammonia shows huge potential as hydrogen carrier. Liquid ammonia - with twice as much hydrogen as liquid hydrogen by volume and carbon-free formulation – unleashes a new dimension in fuel cells applications. Ammonia as a fuel in fuel cells can provide a great impact on de-fossilisation in all power consuming sectors of the global economy. A use of ammonia for industrial business-to-business (B2B) prime power and long-term backup power production provides opportunity for further decrease of carbon dioxide emissions in regions having easy access to this fuel.

Project results are expected to contribute the following expected outcome:

support European industry across the whole val... ver más

ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level technology readiness levels (TRL) and demonstrated reliable durability in operation. However, today’s roadblock preventing fuel cells from winning a greater share of the power market is the lack of availability of affordable, carbon free, and easily transportable fuel. Against this background ammonia shows huge potential as hydrogen carrier. Liquid ammonia - with twice as much hydrogen as liquid hydrogen by volume and carbon-free formulation – unleashes a new dimension in fuel cells applications. Ammonia as a fuel in fuel cells can provide a great impact on de-fossilisation in all power consuming sectors of the global economy. A use of ammonia for industrial business-to-business (B2B) prime power and long-term backup power production provides opportunity for further decrease of carbon dioxide emissions in regions having easy access to this fuel.

Project results are expected to contribute the following expected outcome:

support European industry across the whole value chain in the development of the next generation power appliances utilising ammonia as a fuel; demonstration of high efficiency, fuel cell-based systems operated on ammonia as a means to provide new options for de-fossilisation of different energy sectors and facilitate establishing value chains between fuel cell industry and existing players in industrial markets; contribute to the decarbonisation of autonomous power systems operated on a liquid carbon-free fuel e.g. digital data transmission sector, such as telecom (5-15 kWe), communication support for critical infrastructures (up to 5 kWe), energy supply (up to 10 kWe) for early warning systems (i.e. hazardous climate-related event transmitters. These market opportunities represent a suitable stepping stone to deploy fuel cell systems with high efficient energy conversion rate of ammonia fuel to power within a reasonable timeframe; Set the basis for the development of large power generators in the 100 kW and MW scale for e.g. harbours where ammonia is available as commodity already today. Green ammonia figures as a candidate to become the future standard fuels in maritime applications;Gain and transfer knowledge and experiences to the maritime providing sector. Project results are expected to directly contribute to all of the following objectives of the Clean Hydrogen JU SRIA Pillar 3, Hydrogen End Uses: Clean Heat and Power:

Prepare and demonstrate the next generation of fuel cells for stationary applications able to run under (renewable) hydrogen-rich fuels whilst keeping high performance; Target: Electrical efficiency of the system ≥50%; total system power degradation ≤3% at nominal power measured over at least 1,000 hours of continuous operation; availability of the system ≥90% during whole testing period gathering ≥3,000 operating hours; fuel cell system able to operate at partial loads; Fuel cells operating on alternative (renewable) fuels; Target: 5-15 kW fuel cell system operating with green ammonia including operation at partial load;New technologies and components to reduce costs and improve flexibility in operation. Target: fuel cell system costs ≤5,000 €/kWe for 100 MW annual production.
Scope:The scope of this topic is to design, manufacture and validate in relevant environmental an ammonia fuelled fuel cell system with a total electrical power output of 5-15 kWel. The system should operate for at least 3,000 hours and be also validated for operation at partial loads.

The system requires innovative scientific and engineering solutions. The focus of research may include innovative fuel cell design and should include BoP components and integrated ammonia cracker, safe and durable operation. For system development proposals may use available fuel cell technologies. Fuel cell manufacturers should be part of consortia.

Balance of plant (BoP) components needed for ammonia-driven fuel cells determine overall efficiency and durability of the system and should be designed taking into consideration the following requirements:

Ammonia cracker integration into the system without external power should allow a fully autonomous operation;System design and integration of BoP should enable to maximise heat recovery;System should demonstrate dynamic load and relevant operating conditions in respect to the intended application; Power consumption for internal needs should be minimised. Proposals should address the following:

System design and development utilising existing fuel cell manufacturing technologies;Development of ammonia-tolerant BoP components; Dynamic modelling of system performance;Identification of degradation mechanisms in fuel cells and BoP components (including ammonia purity and degree of ammonia cracking), and effect of operation parameters;Risk assessment of safety aspects in relation to the future certification of the system; Techno-economical assessment for a selected application;System operation / state of health monitoring;System operation with various grades of ammonia, including concentrations of ammonia in the feeding gas and impurities/contaminants;System dynamic load and transient behaviour according to the end-user load profile(s) for selected application(s). Consortia are expected to gather comprehensive expertise from the European research and industrial community. Participation of end user(s) for the selected system application is also expected.

Activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with JRC (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols[1] to benchmark performance and quantify progress at programme level.

Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.


[1]https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0_en

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level technology readiness levels (TRL) and demonstrated reliable durability in operation. However, today’s roadblock preventing fuel cells from winning a greater share of the power market is the lack of availability of affordable, carbon free, and easily transportable fuel. Against this background ammonia shows huge potential as hydrogen carrier. Liquid ammonia - with twice as much hydrogen as liquid hydrogen by volume and carbon-free formulation – unleashes a new dimension in fuel cells applications. Ammonia as a fuel in fuel cells can provide a great impact on de-fossilisation in all power consuming sectors of the global economy. A use of ammonia for industrial business-to-business (B2B) prime power and long-term backup power production provides opportunity for further decrease of carbon dioxide emissions in regions having easy access to this fuel. ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level technology readiness levels (TRL) and demonstrated reliable durability in operation. However, today’s roadblock preventing fuel cells from winning a greater share of the power market is the lack of availability of affordable, carbon free, and easily transportable fuel. Against this background ammonia shows huge potential as hydrogen carrier. Liquid ammonia - with twice as much hydrogen as liquid hydrogen by volume and carbon-free formulation – unleashes a new dimension in fuel cells applications. Ammonia as a fuel in fuel cells can provide a great impact on de-fossilisation in all power consuming sectors of the global economy. A use of ammonia for industrial business-to-business (B2B) prime power and long-term backup power production provides opportunity for further decrease of carbon dioxide emissions in regions having easy access to this fuel.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-JTI-CLEANH2-2022-1 Ammonia powered fuel cell system focusing on superior efficiency, durable operation and design optimisation ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural...
Sin info.
HORIZON-JTI-CLEANH2-2022-01-08 Integration of multi-MW electrolysers in industrial applications
en consorcio: ExpectedOutcome:This flagship[1] project is expected to pave the way for further large-scale integration of electrolyser systems in industri...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-01 Design and industrial deployment of innovative manufacturing processes for fuel cells and fuel cell components
en consorcio: ExpectedOutcome:Fuel cells offer the highest electrical efficiency for conversion of chemically stored energy. They can significantly contri...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-11 Development and demonstration of mobile and stationary compressed hydrogen refuelling solutions for application in inland shipping and short-distance maritime operations
en consorcio: ExpectedOutcome:Hydrogen and hydrogen derivative fuels are expected to play a vital role in enabling the decarbonisation of shipping and mar...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-10 Demonstrating offshore production of green hydrogen
en consorcio: ExpectedOutcome:The European Commission’s “Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future”[1] e...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-05 Scaling up of cells and stacks for large electrolysers
en consorcio: ExpectedOutcome:This topic concerns the research and development of much larger cells and stacks for water electrolysers than the current St...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-01 Compatibility of Distribution non-steel metallic gas grid materials with hydrogen
en consorcio: ExpectedOutcome:In its strategic vision for a climate-neutral EU (to meet the carbon neutrality in 2050) presented by the European Commissio...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-06-01 Hydrogen Valleys (large-scale)
en consorcio: ExpectedOutcome:Building on the successful experience of previous years (Hydrogen Valleys in the FCH 2 JU call 2019 and Hydrogen Islands in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-05 Efficient system for dehydrogenation of liquid organic hydrogen carriers for application to long distance transportations
en consorcio: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-06-02 Hydrogen Valleys (small-scale)
en consorcio: ExpectedOutcome:Building on the successful experience of previous years (Hydrogen Valleys in the FCH 2 JU call 2019 and Hydrogen Islands in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-04 Ammonia to Green Hydrogen: efficient system for ammonia cracking for application to long distance transportations
en consorcio: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-06 Development of large scale LH2 containment for shipping
en consorcio: ExpectedOutcome:An important element of the European Hydrogen strategy is to support liquid hydrogen(LH2) deployment for various usages and...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-03 Safe hydrogen injection management at network-wide level: towards European gas sector transition
en consorcio: ExpectedOutcome:To date, the approach taken to inject hydrogen in the gas networks is left to be defined on a local basis in terms of concen...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-04 Design for advanced and scalable manufacturing of electrolysers
en consorcio: ExpectedOutcome:The huge leap expected in the evolution of water electrolyser technology can be performed only by reaching significant techn...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-01 Development and optimisation of reliable and versatile PEMFC stacks for high power range applications
en consorcio: ExpectedOutcome:Developing and deploying cost-competitive and mature Hydrogen Fuel Cell technology by 2030 is crucial for reaching EU’s aim...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-01 Public understanding of hydrogen and fuel cell technologies
en consorcio: ExpectedOutcome:Public and consumer understanding and acceptance will play a critical role in the successful future adoption of hydrogen and...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-02 Innovative and optimised MEA components towards next generation of improved PEMFC stacks for heavy duty vehicles
en consorcio: ExpectedOutcome:Hydrogen as fuel in transportation has significant advantages compared to pure battery electric propulsion, especially for h...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-02 Hydrogen and H2NG leak detection for continuous monitoring and safe operation of HRS and future hydrogen/H2NG networks
en consorcio: ExpectedOutcome:The growing attention on methane emissions is also triggering a debate around the safety of hydrogen. Although different in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-04 Development of validated test methods and requirements for measuring devices intended for measuring NG/H2 mixtures
en consorcio: ExpectedOutcome:No validated test methods for measuring devices used in the distribution and transmission of hydrogen-enriched natural gas c...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-02 Ammonia powered fuel cell system focusing on superior efficiency, durable operation and design optimisation
en consorcio: ExpectedOutcome:Fuel cells are known as the most efficient energy conversion outperforming conventional power sources. Hydrogen and natural...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-08 Development of novel or hybrid concepts for reliable, high capacity and energy-efficient H2 compression systems at real-world scale
en consorcio: ExpectedOutcome:Interest for hydrogen as an energy carrier is growing and receiving support in different sectors at an unprecedented rate. M...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-02 Development and validation of pressurised high temperature steam electrolysis stacks (Proton Conducting Ceramic Electrolysis)
en consorcio: ExpectedOutcome:Hydrogen is stored, transported or used pressurised with variable pressures depending on user cases, e.g., between 7 and 70...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-04 LH2 tanks for heavy-duty vehicles
en consorcio: ExpectedOutcome:Commercial trucks are responsible for a quarter of road transport CO2 emissions. For the decarbonisation of lighter and heav...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-02 Safety of cryogenic hydrogen transfer technologies in public areas for mobile application
en consorcio: ExpectedOutcome:International regulations addressing CO2 emissions are forcing all industries to rethink their processes to become more sust...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-07-01 Addressing the sustainability and criticality of electrolyser and fuel cell materials
en consorcio: ExpectedOutcome:Electrolyser and fuel cell technologies have reached a level of maturity but still depend heavily on critical raw materials...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-05 Large scale demonstration of hydrogen fuel cell propelled inland waterway vessels
en consorcio: ExpectedOutcome:The total volume of goods transported via inland waterways through the 27 European Union countries was 523 million tonnes in...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-01 Development and validation of pressurised high temperature steam electrolysis stacks (Solid Oxide Electrolysis)
en consorcio: ExpectedOutcome:Hydrogen is stored, transported or used pressurised with variable pressures depending on user cases (e.g. between 7 and 70 b...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-06 Efficiency boost of solar thermochemical water splitting
en consorcio: ExpectedOutcome:In order to ramp up renewable hydrogen production in the future, a suitable portfolio of diverse technologies is needed to s...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-08 Development and optimisation of a dedicated Fuel Cells for Aviation: disruptive next-gen high temperature Fuel Cells technology for future aviation
en consorcio: ExpectedOutcome:The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) a...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-03 Development of low temperature water electrolysers for highly pressurised hydrogen production
en consorcio: ExpectedOutcome:The current generation of Low Temperature Water Electrolysers (LT-WE) are demonstrated on a large scale and are ready for ma...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-07 Bringing green hydrogen MW scale off grid installations closer to technical and financial maturity
en consorcio: ExpectedOutcome:Off-grid locations offer an attractive opportunity to incorporate new Renewable Energy Sources (RES) into the energy system...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-07 Increased hydrogen capacity of GH 2 road trailers
en consorcio: ExpectedOutcome:Due to its low volumetric density, hydrogen presents major challenges for transportation and distribution. Currently, compre...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-06 Development and optimisation of a dedicated Fuel Cells for Aviation: from dedicated stack (100s kW) up to full system (MWs)
en consorcio: ExpectedOutcome:The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) a...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-09 Scaling-up technologies for SOEL
en consorcio: ExpectedOutcome:To decarbonise industries, but also as an energy vector, hydrogen can play a major role, but its production needs to be scal...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-03 Validation of a high-performance hydrogen liquefier
en consorcio: ExpectedOutcome:Hydrogen is liquefied by reducing its temperature to -253°C which increases its volumetric energy density (cryo-compressed f...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-03 Large scale demonstration of European H2 Heavy Duty Vehicle along the TEN-T corridors
en consorcio: ExpectedOutcome:Hydrogen has proven to be the alternative to conventional ICE operated on fossil fuels, especially for long range and flexib...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-03-07 Development of specific aviation cryogenic storage system with a gauging, fuel metering, heat management and monitoring system
en consorcio: ExpectedOutcome:To fulfil the ambitions of a commercial zero emission aircraft a liquid hydrogen (LH2) fuel storage system is needed. In the...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-05 Research & Innovation co-operation with Africa on hydrogen
en consorcio: ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes: Reinforce the activities in the long...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-10 Implementing new/optimised refuelling protocols and components for high flow HRS
en consorcio: ExpectedOutcome:The development of hydrogen powered heavy-duty vehicles (HDV) is key to be able to decarbonise transport of passengers and g...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-03 Reversible SOC system development, operation and energy system (grid) integration
en consorcio: ExpectedOutcome:Reversible Solid Oxide systems (rSOC) have a huge scope in the stationary energy sector because both power generation, in Fu...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-09 Sampling methodology and quality assessment of HRS
en consorcio: ExpectedOutcome:In order to contribute to the 2030 Climate plan, the ‘Fit for 55’ climate action plan and Green Deal, it is of the utmost im...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-04 Dry Low NOx combustion of hydrogen-enriched fuels at high-pressure conditions for gas turbine applications
en consorcio: ExpectedOutcome:A significant reduction of atmospheric pollution and emissions of greenhouse gases from power generation can only be achieve...
Cerrada hace 2 años | Próxima convocatoria prevista para el mes de