Unveiling the role of histone marks in metabolic memory storage and transmission...
Unveiling the role of histone marks in metabolic memory storage and transmission.
Type 2 diabetes (T2D) is a multifactorial disease affecting over 450 million people in Europe alone, amounting to the burden of life-threatening diseases and worsening quality of life. Skeletal muscle is affected early in T2D and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2010-17639
REGULACION Y FUNCION DE MICRORNAS EN EL ISLOTE PANCREATICO
88K€
Cerrado
SAF2008-03803
DETERMINANTES GENETICOS DE LAS ALTERACIONES METABOLICAS DE L...
847K€
Cerrado
PID2020-114054RA-I00
DIMORFISMO SEXUAL EN EL METABOLISMO DE LA GLUCOSA: CARACTERI...
250K€
Cerrado
PID2020-114054RA-I00
DIMORFISMO SEXUAL EN EL METABOLISMO DE LA GLUCOSA: CARACTERI...
250K€
Cerrado
SAF2009-07559
ESTUDIO DE LOS MECANISMOS DE DISFUNCIONALIDAD DEL PROCESO ME...
206K€
Cerrado
BES-2009-014336
DETERMINANTES GENETICOS DE LAS ALTERACIONES METABOLICAS DE L...
43K€
Cerrado
Información proyecto HISTORABLE
Duración del proyecto: 40 meses
Fecha Inicio: 2024-04-10
Fecha Fin: 2027-08-31
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Descripción del proyecto
Type 2 diabetes (T2D) is a multifactorial disease affecting over 450 million people in Europe alone, amounting to the burden of life-threatening diseases and worsening quality of life. Skeletal muscle is affected early in T2D and contributes to the fast decline of whole-body glucose homeostasis, which is called insulin resistance. Interestingly, even when isolated from the body and cultured in a laboratory in non-diabetogenic conditions, the skeletal muscle cells do not lose the characteristics of the donor, i.e., the cells remain insulin resistant, indicating the existence of a cell-autonomous mechanism that retains the metabolic memory across generations of cells. Nonetheless, such a mechanism remains elusive. Accumulating evidence suggests a potential role of histone post-translational modifications as essential vectors of inheritable information, but it is still a matter of intense debate. In this project, to address this question and understand the pathology of T2D, we will trace a comprehensive genome-wide map of histone post-translational modifications induced by T2D in human primary skeletal muscle cells and investigate whether these histone marks can store and transmit information about the metabolic phenotype from the donor to the next generation of cells. Targeted studies using pharmacological and genetic interventions will then address the role of histone modifying enzymes in metabolic memory transmission. The outcomes could lead to a novel understanding of a broader system of cellular memory storage and transmission. By characterizing the disturbances caused by diabetes in the epigenome using state-of-the-art techniques and multidisciplinary approaches, we could pave the way for innovative clinical interventions addressing a critical global health challenge.