R. Langlands conjectured the existence of a correspondence between automorphic spectrums of Hecke algebras and representations of Galois groups of global fields. The existence of such correspondence is one of the main conjectures...
R. Langlands conjectured the existence of a correspondence between automorphic spectrums of Hecke algebras and representations of Galois groups of global fields. The existence of such correspondence is one of the main conjectures in mathematics. Even if not known in full generality it leads to proofs of Ferma and Sato-Tate conjectures.
This project is on three aspects of the Langlands correspondence. The first part of this project is a description of the spectrum of Hecke algebras on the space generated by pseudo Eisenstein series of cuspidal automorphic forms of Levi subgroups. In the simplest non-trivial case, the precise description is a conjecture of Langlands. This conjecture is proven in my work with A. Okounkov, by an unexpected topological interpretation. I expect this approach to work in a number of other cases.
The second part of this project is an extension of the Langlands correspondence to a completely new area of fields of rational functions on curves over local fields. This extension of the Langlands correspondence to a new area could lead to new interplays between Representation Theory and Number Theory.
The third part of the project is on a categorification of the Langlands correspondence necessary for establishing the strong form of this correspondence.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.