Quantitative Rectifiability: from Vitushkin's conjecture to Manifold Learning
For compact planar sets, an analogue to the classic travelling salesman problem is: when can all points in a compact set E be traversed by a rectifiable curve? and how long should such a curve be? P. Jones came up with an answer i...
For compact planar sets, an analogue to the classic travelling salesman problem is: when can all points in a compact set E be traversed by a rectifiable curve? and how long should such a curve be? P. Jones came up with an answer in his influential Analyst's Travelling Salesman Theorem (ATST). Recent work by the PI and collaborators suggest that fundamental questions at the interface between Geometric Measure Theory (GMT), Harmonic Analysis (HA), PDEs and Machine Learning (ML) have at their core establishing higher dimensional analogues of Jones' ATST. This proposal takes up this challenge by focussing onto three concrete investigations: 1) We aim at solving a long-standing and notoriously difficult conjecture of Vitushkin on the connection between analytic capacity and Favard length. As a result of our strategy, we will prove a quantification of the classical Besicovitch-Federer projections theorem. 2) We study the interplay between the geometry and the differentiability structure a set can support, resulting in a) a geometric characterisation of domains admitting a Sobolev trace theorem, and b) a geometric converse of Rademacher's theorem, which answers a notable open question in the David-Semmes theory of uniform rectifiability.
3) We study the geometry of point clouds by developing a corona-type construction which tests whether the data points lie near a parametrisable surface; this is a way of testing the manifold hypothesis, relied upon by most nonlinear dimensionality reduction algortihms in data analysis.
Our framework provide a common language within which we tackle these diverse issues. Hence, achieving our objectives will not only result in major subject-specific breakthroughs, but, just as importantly, will develop and expand this `language', thus providing fertile ground for multidisciplinary interactions to take place.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.