miRNA regulation of developmental sodium channel isoform transition and its impl...
miRNA regulation of developmental sodium channel isoform transition and its implications for Dravet syndrome
Dravet syndrome (DS) is a rare epileptic encephalopathy affecting ~1:20000 children, who suffer from infantile seizures and lifelong deficits in cognitive, motor, behavioural, and social skills. DS can cause premature mortality wi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PSI2014-53346-P
CARACTERIZACION NEUROANATOMICA Y NEUROFISIOLOGICA DEL SINDRO...
74K€
Cerrado
PID2021-128208NB-I00
DESCIFRANDO LA PATOGENESIS DEL SINDROME DE DRAVET: DEL GENOM...
218K€
Cerrado
SAF2013-48960-P
GENETICA DE LAS EPILEPSIAS HUMANAS: HACIA EL DIAGNOSTICO PRE...
73K€
Cerrado
BFU2015-66910-R
ESTRUCTURA-FUNCION DE CANALES MUTADOS EN ENCEFALOPATIAS EPIL...
218K€
Cerrado
PID2021-128587OB-I00
SUPLEMENTACION DE SCN1A PARA LA REVERSION DE ENCEFALOPATIAS...
162K€
Cerrado
PromoTeRapy
Haploinsufficiency and Intractable Epilepsy Rescue Increasin...
195K€
Cerrado
Información proyecto miRSodium
Duración del proyecto: 23 meses
Fecha Inicio: 2022-09-01
Fecha Fin: 2024-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Dravet syndrome (DS) is a rare epileptic encephalopathy affecting ~1:20000 children, who suffer from infantile seizures and lifelong deficits in cognitive, motor, behavioural, and social skills. DS can cause premature mortality with up to 21% of patients not reaching adulthood. Despite the known genetic origin – 80% of patients carry a mutation in the SCN1A gene encoding the alpha1 subunit of the sodium voltage gated channel – there is no cure for this disease. The symptoms of DS start at ~ six months of age, shortly after the transition from the developmental Nav1.3 (SCN3A gene) to the postnatal Nav1.1 (SCN1A) channel isoform carrying the mutation. The mechanism of this transition remains unexplained, which hinders the Nav1.3 isoform-based DS therapy. I will build upon the recently discovered miRNAs’ (short, non-coding RNA) regulatory effect on SCN1A and 3A genes to elucidate regulation of the isoform transition. My ULTIMATE AIM is to harness the protective effect of the Nav1.3 isoform via miRNA regulation as a DS treatment. I will untangle the miRNA profile of DS from birth to the symptom onset in a well-established mouse model. Through miRNA expression manipulation, I will resolve miRNA function in SCN1A and 3A regulation, its impact on the brain, and ultimately on DS symptoms. My skills in developmental epilepsy models will combine with Prof Henshall’s expertise in miRNA function and use in treatment (shown by miRNA-based treatments for epilepsy in pre-clinical development) to deliver novel treatment options for devastating DS and advance the field of miRNA regulation in the brain. This training & collaboration with top neurobiologists at three excellent institutions – RCSI (host), UA & UMCU (secondment partners) – will advance my skills & employability and propel my career in developmental neurobiology. It will also contribute to the quality of Europe's research and innovation, increasing its competitiveness and attractiveness as a leading research destination.