Dissecting the molecular basis of immunological memory in human T cells
T lymphocytes are essential for immunity to pathogens and malignancies. Activated T cells can retain a ‘memory’ imprint of their adversary (e.g. a virus), enabling them to respond more rapidly and vigorously to any subsequent enco...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-125757OB-I00
INTERACCIONES GENICAS Y PROTEICAS DE CD69 Y SUS REGIONES GEN...
157K€
Cerrado
SAF2016-80803-R
ANALISIS DE UNA NUEVA FUNCION DE P21 COMO SUPPRESOR SELECTIV...
145K€
Cerrado
PID2021-125277OB-I00
DESCIFRANDO EL PAPEL Y LA REGULACION DE LA ARQUITECTURA DEL...
303K€
Cerrado
RTI2018-095902-B-I00
MECANISMOS TRANSCRIPCIONALES IMPLICADOS EN EL PAPEL INFLAMAT...
315K€
Cerrado
SAF2017-88086-R
CELULAS MIELOIDES Y PLASTICIDAD EPIGENETICA: MECANISMOS E IM...
290K€
Cerrado
Th17 tissue metab
Metabolic imprinting of Th17 cells in disease pathogenesis
266K€
Cerrado
Información proyecto Remin-T
Duración del proyecto: 33 meses
Fecha Inicio: 2022-11-15
Fecha Fin: 2025-08-31
Descripción del proyecto
T lymphocytes are essential for immunity to pathogens and malignancies. Activated T cells can retain a ‘memory’ imprint of their adversary (e.g. a virus), enabling them to respond more rapidly and vigorously to any subsequent encounters. While memory T cell formation is critical for successful vaccination and anti-tumor immunity, dysfunctional memory T cells are a common feature of human disease, including allergy, autoimmunity and cancer. T cell activation emerges from changes in gene expression dictated by intricate chromatin dynamics. Recently, 3D chromatin folding emerged as a key regulator of transcriptional control by ensuring correct communication between regulatory elements and their target genes. How memory T cells leverage three-dimensionally organized chromatin configurations to achieve rapid re-activation of specific inflammatory genes is unclear. Hence, the molecular mechanisms that control and maintain immunological memory remain poorly understood. To address this issue, I propose an innovative molecular strategy to dissect immunological memory in primary human CD4+ T cells that combines cutting-edge genome-wide analyses of gene expression, chromatin state and three-dimensional (3D) genome folding with CRISPR/Cas9-based functional assays. This approach will generate the first integrated multidimensional epigenome atlas of a human T cell memory recall response, yielding molecular circuits of genes, regulatory elements and biological pathways underlying human immunological memory. Multimodal single cell genomics assays will reveal the nature of transcriptome-epigenome crosstalk in individual T cells and the heterogeneity of memory recall. These insights will force a breakthrough in our understanding of how human immune cells maintain specific transcriptional programs for launching rapid and tailored responses upon re-activation, and how this feeds into susceptibility to develop disease.