Commutators Hilbert and Riesz transforms Shifts Harmonic extensions and Marti...
This project aims to develop two arrays of questions at the heart of harmonic
analysis, probability and operator theory:
Multi-parameter harmonic analysis.
Through the use of wavelet methods in harmonic analysis, we plan to shed...
This project aims to develop two arrays of questions at the heart of harmonic
analysis, probability and operator theory:
Multi-parameter harmonic analysis.
Through the use of wavelet methods in harmonic analysis, we plan to shed new
light on characterizations for boundedness of multi-parameter versions of
classical Hankel operators in a variety of settings. The classical Nehari's theorem on
the disk (1957) has found an important generalization to Hilbert space
valued functions, known as Page's theorem. A relevant extension of Nehari's
theorem to the bi-disk had been a long standing problem, finally solved in
2000, through novel harmonic analysis methods. It's operator analog remains
unknown and constitutes part of this proposal.
Sharp estimates for Calderon-Zygmund operators and martingale
inequalities.
We make use of the interplay between objects central to
Harmonic analysis, such as the Hilbert transform, and objects central to
probability theory, martingales. This connection has seen many faces, such as
in the UMD space classification by Bourgain and Burkholder or in the formula
of Gundy-Varapoulos, that uses orthogonal martingales to model the behavior of
the Hilbert transform. Martingale methods in combination with optimal control
have advanced an array of questions in harmonic analysis in recent years. In
this proposal we wish to continue this direction as well as exploit advances
in dyadic harmonic analysis for use in questions central to probability. There
is some focus on weighted estimates in a non-commutative and scalar setting, in the understanding of discretizations
of classical operators, such as the Hilbert transform and their role played
when acting on functions defined on discrete groups. From a martingale
standpoint, jump processes come into play. Another direction is the use of
numerical methods in combination with harmonic analysis achievements for martingale estimates.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.