Versatility of scaffold complexes in vivo to control synaptic plasticity
Receptors and associated scaffolds, together called receptosome, are relatively stable structures, but exchange of individual adaptor proteins can occur on a short time scale and in a highly regulated manner, which provides fine-t...
Receptors and associated scaffolds, together called receptosome, are relatively stable structures, but exchange of individual adaptor proteins can occur on a short time scale and in a highly regulated manner, which provides fine-tuning, speed, and specificity to the receptor signaling. Therefore, understanding how receptor function is affected by the composition and dynamics of complexes is an essential biological concern that will offer the opportunity to target exclusively the therapeutically relevant signaling pathway of a given receptor. We propose that in the brain, receptosome dynamics is involved in fine-tuning synaptic transmission and plasticity, which might be crucial for cognitive functions.
First, we will establish the link between molecular events, neuronal signaling and memory performance. More than correlations, this project proposes live recording of molecular events and cellular signaling during memory encoding. Second, new specific therapeutic targets will be proposed for the treatment of cognitive deficiencies: instead of interfering with the ligand-biding pocket of the receptor, we propose to target specific scaffold interactions. This strategy will only modify a specific altered function of a receptor without modifying other functions (thus, avoiding undesired side effects). Third, within the scope of this proposal, we will develop innovative, powerful techniques that will be of high interest for a broad community of researchers in life sciences. These technologies will enable to monitor the versatility of protein-protein interactions in space and time ranging from in cellulo to in vivo BRET imaging in freely behaving animals. To conclude, we will establish the functional significance of oligomer remodeling in the physiological synaptic plasticity and try to restore it in neurological disorders.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.