Plasticity of neurotransmitter release sites in temporal coding, homeostasis, le...
Plasticity of neurotransmitter release sites in temporal coding, homeostasis, learning and disease
Virtually all neural computation relies on synaptic plasticity, the dynamic change of chemical synaptic communication achieved by transmitter exocytosis from vesicles at presynaptic release sites to activate postsynaptic receptors...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
VERTICAL CITY
Versatility of scaffold complexes in vivo to control synapti...
2M€
Cerrado
RTI2018-096948-B-I00
REGULACION OUTSIDE-IN DE LA FUNCION PRESINAPTICA POR FACTORE...
218K€
Cerrado
BFU2011-26339
PLASTICIDAD SINAPTICA INDEPENDIENTE DE RECEPTORES NMDA EN EL...
121K€
Cerrado
MemCode
Cracking the Synaptic Memory Code
2M€
Cerrado
DiverseSynapse
Revealing the Landscape of Synaptic Diversity by Cell type-...
2M€
Cerrado
PID2021-124536NB-I00
IDENTIFICACION DE NUEVOS MECANISMOS PRESINAPTICOS USADOS PAR...
288K€
Cerrado
Información proyecto PlasticSite
Duración del proyecto: 73 meses
Fecha Inicio: 2022-11-15
Fecha Fin: 2028-12-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Virtually all neural computation relies on synaptic plasticity, the dynamic change of chemical synaptic communication achieved by transmitter exocytosis from vesicles at presynaptic release sites to activate postsynaptic receptors. Plasticity mechanisms must be powerful, scalable and sustainable over all timescales of neural processing. Which part of the synaptic machinery is the best suited plasticity target? The number of synaptic vesicles greatly outnumbers that of release sites, essentially making the sites gatekeepers of all neural communication. Release site plasticity could thus be pivotal to all neural processing. We recently discovered the molecular identity of release sites (conserved Unc13 proteins) and found evidence of potent release site plasticity on timescales of milliseconds, minutes and days. We are now in the position to use this molecular handle to unravel the principles of this plasticity which will be key to understand neural function, behaviour and disease.
Owing to the conserved process and machinery, we will harness the power of Drosophila genetics to elucidate general mechanisms and broad relevance of three distinct release-site plasticity phenomena:
1. Release site switching for millisecond facilitation of transmission and its contribution to network pattern generation as needed for locomotion.
2. Release site activation for minutes’ potentiation of transmitter release and its role in homeostasis and learning.
3. Release site accumulation for long-lasting potentiation with regained dynamic range and its role in homeostasis and memory.
Finally, disease mutations accumulate in proteins relating to release site function. We will thus (4.) investigate whether these mutations affect release site plasticity in flies and attempt treatment of their induced defects by artificial enhancement of plasticity. My work will set the stage to establish the investigation of the role of this novel and fundamental plasticity in neural function and disease.