Innovating Works

PreSynPlast

Financiado
Molecular mechanisms of presynaptic plasticity
The ambitious goal of this project is to reveal the molecular mechanisms of presynaptic plasticity in the vertebrate brain. Synaptic plasticity occurs in the form of alterations in both presynaptic neurotransmitter release and pos... The ambitious goal of this project is to reveal the molecular mechanisms of presynaptic plasticity in the vertebrate brain. Synaptic plasticity occurs in the form of alterations in both presynaptic neurotransmitter release and postsynaptic receptor function. However, due to technical reasons and in contrast to intensely studied postsynaptic plasticity, the presynaptic half of the brain’s synaptic plasticity remains enigmatic. This is a crucial knowledge gap for our understanding of learning and memory. My ambitious aim is therefore to uncover the molecular and biophysical mechanisms of presynaptic plasticity. Building on my strong track record in presynaptic research, my group made a technical breakthrough by establishing patch-clamp recordings from small nerve terminals of cultured neocortical neurons with unprecedented high resolution. In addition, we use an innovative super-resolution-microscopy approach resolving the rearrangement of proteins within the presynaptic neurotransmitter release site, which allows high-throughput screening of all major classes of synaptic genes for their involvement in presynaptic plasticity. To reveal the neuron- and plasticity-type specificity, the identified molecular pathways will be analysed in different types of neurons in culture and acute brain slices. Building on these unique abilities, I will also investigate physiological and pathophysiological modulations of presynaptic plasticity. Specifically, I will test the hypothesis that metabolic constraints regulate presynaptic plasticity and that the amyloid pathology of Alzheimer’s disease impacts presynaptic plasticity. Thus, for the first time in the history of neuroscience, neocortical nerve terminals can be investigated with direct electrophysiological recordings and super-resolution microscopy providing unprecedented spatial and temporal resolution for the analysis of presynaptic plasticity. The results could pave the way for new approaches treating neurological diseases. ver más
31/08/2025
2M€
Duración del proyecto: 66 meses Fecha Inicio: 2020-02-20
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-02-20
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITAET LEIPZIG No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5