Triangulated categories and their applications, chiefly to algebraic geometry
There are two components to this project.
(1) Develop and extend the striking new theory, created by the PI in the last few years, which studies triangulated categories via metrics and approximations.
(2) Build on very rec...
There are two components to this project.
(1) Develop and extend the striking new theory, created by the PI in the last few years, which studies triangulated categories via metrics and approximations.
(2) Build on very recent work to better understand which functors are Fourier-Mukai and which aren't.
In the case of (1), the novel idea of appropriately using metrics has already allowed the PI to prove several difficult conjectures, the most recent just a few weeks ago. The potential of the new theory is immense, and this project aims to extend the scope of the methods and apply them widely. The project also aims to work out the implications of a surprising theorem proved by the methods, which shows that the derived category of perfect complexes and the bounded derived category of coherent sheaves are constructible from each other, as triangulated categories, by an explicit recipe. This theorem flies in the face of accepted wisdom, which viewed the two categories as totally different. Thus a whole body of work, analysing the many differences between these derived categories, needs to be carefully revisited and reconsidered in the light of the new construction.
The Fourier-Mukai transforms of (2) have a long and venerable history, with beautiful work by many authors. But there were novel techniques introduced in a couple of recent articles, and the project plans to deploy them more widely. The aim is for a breakthrough in the area, leading to a better understanding of which exact functors are Fourier-Mukai and which aren't.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.