Semi Parametric Econometric Models Health Obesity and Patient Expenditures
Econometric modelling of healthcare costs serves many purposes: to obtain key parameters in cost-effectiveness analyses; to implement risk adjustment in insurance systems; and to examine the impact of risk factors such as smoking...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ECO2008-06395-C05-01
LA DINAMICA EN LAS DECISIONES INDIVIDUALES Y SUS EFECTOS SOB...
154K€
Cerrado
ECO2017-85577-P
APORTACIONES A LA TOMA DE DECISIONES BAYESIANAS OPTIMAS: APL...
38K€
Cerrado
PID2021-127989OB-I00
EVALUACION ECONOMICA Y META-ANALISIS: SOLUCIONES BAYESIANAS...
76K€
Cerrado
MTM2010-14913
ANALISIS DE DATOS LONGITUDINALES: MODELOS ANTEDEPENDIENTES Y...
41K€
Cerrado
TIN2016-80565-R
DESARROLLO Y ESTUDIO DE ALGORITMOS PARA BUSQUEDA DEL MEJOR M...
47K€
Cerrado
Información proyecto SPEM
Duración del proyecto: 32 meses
Fecha Inicio: 2017-04-05
Fecha Fin: 2019-12-31
Líder del proyecto
UNIVERSITY OF YORK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
183K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Econometric modelling of healthcare costs serves many purposes: to obtain key parameters in cost-effectiveness analyses; to implement risk adjustment in insurance systems; and to examine the impact of risk factors such as smoking and obesity. Modelling healthcare costs is challenging because the cost data are typically non-negative, heavy tailed and highly skewed.
Filling the gap in the literature: SPEM will develop an ambitious research programme that simultaneously meet these conditions: (1) no need for retransformation of costs; (2) be able to estimate both the conditional mean and the whole distribution; (3) no need to differentiate zero costs from positive costs; (4) be less parametric and more flexible; and (5) be able to accommodate panel data. Such a method does not exist in the literature. Another highlight of SPEM is that the new method will be used for out-of-sample prediction and full distributional analysis which are typically not considered in the semiparametric framework.
Promoting more informed decision making: SPEM will produce accurate and robust estimates of the relationship between childhood obesity and healthcare costs, which are crucial in the design and evaluation of government programmes aimed at treating and preventing childhood obesity. This will be achieved through an empirical application. The Longitudinal Study of Australian Children (6 waves: 2004-2014) and linked records from Medicare will be used to investigate the relationship between childhood obesity and healthcare costs.