Forests cover more than 40% of Europe’s surface and are essential for biodiversity, provide fresh water, absorb carbon and prevent
erosion. Yet they face detrimental effects of climate change, such as wildfires or outbreaks of the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2012-32100
EQUIPOS MULTI-ROBOT PARA LOGISTICA, MANTENIMIENTO Y MONITORI...
153K€
Cerrado
DPI2016-78361-R
CREACION DE MAPAS MEDIANTE METODOS DE APARIENCIA VISUAL PARA...
163K€
Cerrado
DIN2020-011543
TWINLiDAR: Gemelo digital forestal para clasificar y medir á...
35K€
Cerrado
PTQ2018-009933
TWINTREE: Gemelo digital forestal para clasificar y medir ár...
75K€
Cerrado
TEC2011-28626-C02-01
FUSION ADAPTABLE BASADA EN CONTEXTO. SISTEMAS AVANZADOS DE V...
46K€
Cerrado
DPI2009-07144
FUSION SENSORIAL Y SLAM ACTIVO COOPERATIVO PARA ENTORNOS DE...
27K€
Cerrado
Información proyecto RaCOON
Duración del proyecto: 34 meses
Fecha Inicio: 2023-07-26
Fecha Fin: 2026-05-31
Líder del proyecto
OREBRO UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
223K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Forests cover more than 40% of Europe’s surface and are essential for biodiversity, provide fresh water, absorb carbon and prevent
erosion. Yet they face detrimental effects of climate change, such as wildfires or outbreaks of the bark beetle. The field of robotics
offers a pallet of tools to help manage and monitor forests, yet mainly by flying robots. Ground robots that could carry heavier
equipment and last longer struggle in vegetation since their autonomy systems have been developed for obstacle-free scenarios
(e.g., driving on roads). The research proposed here, Radar Classification Of Obstacles in Nature (RaCOON), aims to enable the
deployment of ground robots in forests by giving them the ability to decide which vegetation can be safely driven through. The
applicant will deploy a new sensor modality, i.e. radar, and develop a novel sensor fusion system that will classify vegetation into the
obstacle and non-obstacle categories. This additional information will allow ground robots to autonomously plan trajectories and
navigate in vegetation. The problem will be approached first by exploring the possibilities of radars in a proof-of-concept experiment.
Then, a forest robotic dataset will be recorded in various types of vegetation. The experience from the proof-of-concept experiment
and the recorded data will motivate the design of the final sensor fusion system. The outcomes of RaCOON will be 1) dissemination of
the new system and dataset to the research community and professional networks, 2) training of the applicant in the deployment of
radars for mobile robots and 3) extending the applicant’s professional network and independent research capabilities, advancing him towards starting his own robust field robotics research group.