Forests cover more than 40% of Europe’s surface and are essential for biodiversity, provide fresh water, absorb carbon and prevent
erosion. Yet they face detrimental effects of climate change, such as wildfires or outbreaks of the...
Forests cover more than 40% of Europe’s surface and are essential for biodiversity, provide fresh water, absorb carbon and prevent
erosion. Yet they face detrimental effects of climate change, such as wildfires or outbreaks of the bark beetle. The field of robotics
offers a pallet of tools to help manage and monitor forests, yet mainly by flying robots. Ground robots that could carry heavier
equipment and last longer struggle in vegetation since their autonomy systems have been developed for obstacle-free scenarios
(e.g., driving on roads). The research proposed here, Radar Classification Of Obstacles in Nature (RaCOON), aims to enable the
deployment of ground robots in forests by giving them the ability to decide which vegetation can be safely driven through. The
applicant will deploy a new sensor modality, i.e. radar, and develop a novel sensor fusion system that will classify vegetation into the
obstacle and non-obstacle categories. This additional information will allow ground robots to autonomously plan trajectories and
navigate in vegetation. The problem will be approached first by exploring the possibilities of radars in a proof-of-concept experiment.
Then, a forest robotic dataset will be recorded in various types of vegetation. The experience from the proof-of-concept experiment
and the recorded data will motivate the design of the final sensor fusion system. The outcomes of RaCOON will be 1) dissemination of
the new system and dataset to the research community and professional networks, 2) training of the applicant in the deployment of
radars for mobile robots and 3) extending the applicant’s professional network and independent research capabilities, advancing him towards starting his own robust field robotics research group.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.