QUALITATIVE THEORY AND NON DEGENERATE AND DEGENERATE BIFURCATIONS IN n DIMENSION...
QUALITATIVE THEORY AND NON DEGENERATE AND DEGENERATE BIFURCATIONS IN n DIMENSIONAL DYNAMICAL SYSTEMS
Dynamical systems theory contains important tools in investigating various theoretical and practical models generated by systems of differential equations. Such models may be found in a lot of areas, ranging from Mathematics, Engi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LDNAD
Low dimensional and Non autonomous Dynamics
222K€
Cerrado
MTM2017-84383-P
ORBITAS PERIODICAS E INTEGRABILIDAD EN SISTEMAS DIFERENCIALE...
29K€
Cerrado
MTM2008-03437
ORBITAS PERIODICAS, BIFURCACIONES E INTEGRABILIDAD DE LOS SI...
375K€
Cerrado
BIFURCATIONS
Bifurcations in nonsmooth differential equations
168K€
Cerrado
MTM2008-00694
METODOS CUALITATIVOS E INTEGRABILIDAD EN LAS ECUACIONES DIFE...
75K€
Cerrado
MTM2017-87915-C2-1-P
SINGULARIDADES EN SISTEMAS DINAMICOS: EL PAPEL DE LA REGULAR...
24K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Dynamical systems theory contains important tools in investigating various theoretical and practical models generated by systems of differential equations. Such models may be found in a lot of areas, ranging from Mathematics, Engineering to Medicine and Psychiatry. In this project we address some unexplored themes in this field. We will study degenerate codimension-2 bifurcations in n-dimensional dynamical systems. Of these bifurcations we will focus on the fold-Hopf degenerate bifurcation, firstly in three dimensional nonlinear continuous dynamical systems and then we will generalize it for n-dimensional dynamical systems. In discrete dynamical systems, an analogous of the continuous fold-Hopf bifurcation will also be addressed. The existence and number of limit cycles in two-dimensional (polynomial, Hamiltonian, perturbed Hamiltonian) continuous and discontinuous differential systems is another objective of this project. Using Melnikov functions of any order we will give new insights on the existence and number of limit cycles in these systems. Finally, we are interested in investigating some practical models.