Macromolecular Voltage Gated Na Channel Complexes in the Regulation of Normal a...
Macromolecular Voltage Gated Na Channel Complexes in the Regulation of Normal and Diseased Cardiac Excitability
The dynamic modulation of ion channels is crucial to the regulation of cardiac excitability and defects in channel modulation, associated with congenital and acquired cardiac diseases, lead to the development of life threatening a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-118694RB-I00
DETERMINANTES MOLECULARES DEL AUMENTO DE CANALES DE SODIO Y...
277K€
Cerrado
SAF2014-58769-P
MECANISMOS Y DETERMINANTES MOLECULARES RESPONSABLES DE LA MO...
266K€
Cerrado
MOVINGHEART
How pathological mutations and drugs alter the intracellular...
215K€
Cerrado
SAF2017-88116-P
PAPEL DE LOS FACTORES DE TRANSCRIPCION ESPECIFICOS CARDIACOS...
218K€
Cerrado
SAF2011-27627
ESTUDIO DE LOS MECANISMOS MOLECULARES QUE REGULAN LA EXPRESI...
121K€
Cerrado
SAF2016-75021-R
ESTUDIO EN PROFUNDIDAD DEL CANALOSOMA CARDIACO DE KV1.5
230K€
Cerrado
Información proyecto NAVEX
Líder del proyecto
UNIVERSITE DE NANTES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
75K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The dynamic modulation of ion channels is crucial to the regulation of cardiac excitability and defects in channel modulation, associated with congenital and acquired cardiac diseases, lead to the development of life threatening arrhythmias. The dynamic modulation of functional expression of ion channels is achieved through changes in cell surface expression and/or functioning of pore-forming channel subunits. Some of the mechanisms used to achieve these regulations involve interactions of pore-forming channel subunits with accessory subunits and post-translational modifications (PTM) of channel components. The voltage-gated Na+ (Nav) current (INa), generated by Nav1.5 channels, is a key regulator of cardiac excitability, modulating action potential waveforms, refractoriness and propagation. Previous studies have linked family mutations in genes encoding Nav1.5 and Nav1.5 interacting proteins with cardiac arrhythmias, and parallel analyses have suggested roles for these mutations in dysregulating Nav1.5 channel functional expression. However, the mechanisms whereby such native alterations in Nav1.5 function are achieved require identification and functional analysis of in situ Nav1.5 channels. The goal of the present proposal, therefore, is (1) to characterize the native components of Nav1.5 channel complexes, as well as PTM of these components, in the heart, by the use of mass spectrometry analyses; (2) to investigate the role(s) of the previously identified accessory subunit ankyrin G in regulating the functional expression of Nav1.5-encoded INa channels; and (3) to analyze the regulation defects associated with the E1053K mutation in Nav1.5, associated with Brugada syndrome, at the molecular, cellular and whole-animal levels. Altogether, the research proposed will improve our scientific knowledge about ion channel regulation in normal and diseased cardiac excitability, which is needed for improved identification, prevention and treatment of cardiac arrhythmias.