Integrable Many-Body Systems through the Mathematical Lens
The project focuses on the relation between integrable many-body systems and three important fields of mathematics: partial differential equations, Painlevé equations, and probability theory. The goal is to build new c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MTM2008-00988
ESTUDIO DE ALGUNOS PROBLEMAS PARA ECUACIONES DIFERENCIALES O...
41K€
Cerrado
MTM2008-00988
ESTUDIO DE ALGUNOS PROBLEMAS PARA ECUACIONES DIFERENCIALES O...
41K€
Cerrado
MTM2011-26717
METODOS VARIACIONALES Y ECUACIONES EN DERIVADAS PARCIALES EL...
14K€
Cerrado
MTM2011-22587
SISTEMAS DINAMICOS DISCRETOS DIFERENCIABLES Y DINAMICA HAMIL...
63K€
Cerrado
FIS2008-00200
DESARROLLOS SEMICLASICOS EN SISTEMAS INTEGRABLES. PROCESOS C...
48K€
Cerrado
Información proyecto IMBS-Math
Duración del proyecto: 27 meses
Fecha Inicio: 2023-05-13
Fecha Fin: 2025-08-31
Líder del proyecto
UNIVERSITE DANGERS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
212K€
Descripción del proyecto
The project focuses on the relation between integrable many-body systems and three important fields of mathematics: partial differential equations, Painlevé equations, and probability theory. The goal is to build new connections in this context by considering recent results as follows. The first objective consists in explaining how a class of integrable many-body systems that appeared over the last 5 years can be used to parametrise specific solutions to hierarchies of partial differential equations. An algebraic and a geometric interpretation of these parametrisations will be sought. The second objective deals with the extension of the Hamiltonian formulation of many-particle Painlevé equations, called the Calogero-Painlevé correspondence, to new cases. This investigation will make a central use of the current activity on discrete Painlevé equations and the quantum analogues of Painlevé equations. The third objective related to probability theory is two-fold. On the one hand, quantum versions of integrable many-body systems will be derived by adding noise to specific diffusion processes that are constructed using their classical versions. On the other hand, important properties of probability distributions appearing in random matrix theory or the study of beta ensembles will be obtained. The point of view will be to interpret these distributions in terms of suitable many-body systems whose integrability will play a key role for the computation of the desired properties.