Explicit methods for rational points on curves and their Jacobians
"The theory of rational points on curves and their Jacobians is distinguished by being both attractive and notoriously difficult. Despite major theoretical advances, explicit methods are of particular importance in this area. For...
"The theory of rational points on curves and their Jacobians is distinguished by being both attractive and notoriously difficult. Despite major theoretical advances, explicit methods are of particular importance in this area. For instance, the conjecture of Birch and Swinnerton-Dyer (BSD), one of the Millennium Prize problems, was formulated based on numerical evidence. A proof of the strong version of this conjecture for abelian varieties seems out of reach at present, and even the verification in examples was, until recently, only possible in dimension 1.Besides being interesting in its own right, the importance of explicit methods for the computation of the rational points on curves stems from the fact that many moduli problems can be reduced to such computations. Therefore, explicit methods can be used to solve theoretical problems, but in the other direction, theoretical advances often lead to improved explicit methods. One example is the recent computation of the rational points on the ""cursed curve"" X_ns^+(13) using the quadratic Chabauty (QC) method, an explicit special case of Kim's non-abelian Chabauty program.We propose two research projects, connected by height theory, to significantly advance the state of the art in explicit methods for rational points on curves and Jacobians. In the first one, we will develop an explicit theory of heights to compute Mordell-Weil groups of Jacobians of non-hyperelliptic curves of genus 3. We will use it for the verification of the strong BSD conjecture for modular examples, going beyond the hyperelliptic case for the first time. In the second one, we will drastically increase the applicability of the QC method by removing several restrictive conditions, and apply it to Atkin-Lehner quotients of modular and Shimura curves, thereby solving several open moduli problems."ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.