Shimura varieties and the Birch Swinnerton Dyer conjecture
"One of the most famous open problems in mathematics is the Birch–Swinnerton-Dyer (BSD) conjecture, which predicts that the size of the set of rational points on an elliptic curve is determined by the order of vanishing at s = 1 o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Euler systems
Euler systems and the Birch Swinnerton Dyer conjecture
1M€
Cerrado
MTM2012-34611
ARITMETICA DE FUNCIONES L Y ESTRUCTURAS DE GALOIS
111K€
Cerrado
MTM2009-13060-C02-02
ARITMETICA DE CURVAS HIPERELIPTICAS Y DE GENERO 3 Y VARIEDAD...
72K€
Cerrado
PID2019-107297GB-I00
MODULARIDAD DE REPRESENTACIONES DE GALOIS Y ECUACIONES DIOFA...
37K€
Cerrado
MTM2009-11393
TEORIA DE SOLITONES Y MODULI DE CURVAS Y VARIEDADES ABELIANA...
83K€
Cerrado
Información proyecto ShimBSD
Duración del proyecto: 61 meses
Fecha Inicio: 2021-03-24
Fecha Fin: 2026-04-30
Líder del proyecto
Mimotec SA
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"One of the most famous open problems in mathematics is the Birch–Swinnerton-Dyer (BSD) conjecture, which predicts that the size of the set of rational points on an elliptic curve is determined by the order of vanishing at s = 1 of its Hasse–Weil L-function. Building a crucial breakthrough due to Kolyvagin in the 1990's—the discovery of the first example of an ""Euler system""—the BSD conjecture has now been proved for a wide class of elliptic curves over the rationals: those where the order of vanishing of the L-function (the ""analytic rank"") is 0 or 1, which conjecturally accounts for 100% of elliptic curves.
However, the case of elliptic curves over the rationals is only the tip of an iceberg. Versions of the BSD conjecture are also expected to hold for elliptic curves over number fields, and more generally for abelian varieties of any dimension (with elliptic curves being the case of dimension 1). Even more generally, the Bloch–Kato conjecture predicts that for any L-function arising from geometry, its order of vanishing at any integer point encodes geometric information. However, these conjectures are far beyond the reach of Kolyvagin's Euler system.
The aim of my proposal is to prove new cases of the BSD conjecture and the Bloch–Kato conjecture, using new Euler systems arising from the geometry of unitary and symplectic Shimura varieties. In particular, I will prove the rank 0 case of the BSD conjecture for abelian surfaces over the rationals, elliptic curves over imaginary quadratic fields, and abelian three-folds with complex multiplication, assuming appropriate modularity results hold for these objects (which are known in many cases)."