Enhancement of Memory- and Energy-related Properties of Fluorite Structured Ferr...
Enhancement of Memory- and Energy-related Properties of Fluorite Structured Ferroelectrics
For several decades, ferroelectric (FE) materials (particularly lead-based perovskite materials) attained wide attention for memory (non-volatile) and energy storage applications. The FE memories offer low power consumption, high...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PDC2023-145874-I00
Materiales con funcionalidad eléctrica, magnética, óptica o...
180K€
Cerrado
FIS2008-00715
FERROELECTRICOS RELAXORES EN LAMINA DELGADA: MEMORIAS NANOME...
48K€
Cerrado
TED2021-130453B-C21
ESCRITURA OPTICA EN MATERIALES FERROELECTRICOS COMPATIBLES C...
196K€
Cerrado
FJC2020-043023-I
Epitaxial Thin Films of Ferroelectric HfO2 with High Polariz...
53K€
Cerrado
PID2020-112548RB-I00
CAPAS FINAS EPITAXIALES DE HFO2 CON ALTA POLARIZACION FERROE...
109K€
Cerrado
FERHAZ
Multiscale Investigations on Si integrable Ferroelectric Haf...
166K€
Cerrado
Información proyecto MEFF
Duración del proyecto: 36 meses
Fecha Inicio: 2024-03-07
Fecha Fin: 2027-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
For several decades, ferroelectric (FE) materials (particularly lead-based perovskite materials) attained wide attention for memory (non-volatile) and energy storage applications. The FE memories offer low power consumption, high speed, and high endurance and retention. However, the conventional FE materials couldn't surpass the niche applications due to the difficulties in scaling the size below the ~100 nm node. Recently, FE properties have been reported in doped HfO2 polycrystalline thin films. HfO2-based FE materials have several advantages over conventional materials, such as lead-free, compatibility with existing Si technology and CMOS, ultrathin thickness (in the range of nm), and suitability for integration within 3D nanostructures. Therefore, fluorite-structured materials can be appropriate for miniaturized devices. These materials are extensively studied for memory and energy-related applications. However, progress is still needed, such as more control in the microstructure of the films (formed phases and defects), understanding of complex switching behavior (including wake-up, fatigue, and split-up), and improvement of device reliability. This project investigates HfO2-based epitaxial films as a model system for energy storage and memory applications. We will focus on the enhancement of endurance without retention degradation of memory devices. This project also aims to enhance the energy storage properties of HfO2-based films. Moreover, we will also use artificial intelligence to analyze the relatability of memory and energy devices.