Descripción del proyecto
EL PRESENTE PROYECTO PLANTEA 11 LINEAS DE INVESTIGACION RELACIONADAS CON LA RESOLUCION NUMERICA DE ECUACIONES NO LINEALES, ENTRE LOS OBJETIVOS DE ESTAS LINEAS, PODEMOS DESTACAR EL DE DISEÑAR METODOS ITERATIVOS EFICIENTES PARA LA RESOLUCION NUMERICA DE ECUACIONES Y SISTEMAS NO LINEALES, ANALIZANDO SU CONVERGENCIA Y EFICIENCIA COMPUTACIONAL, ASI POR EJEMPLO, BUSCAMOS METODOS LIBRES DE DERIVADAS Y/O LIBRES DE INVERSOS POR SU APLICABILIDAD EN PROBLEMAS DE OPTIMIZACION Y EN PROBLEMAS QUE PRESENTEN SINGULARIDADES EN LA SOLUCION BUSCADA, EL USO DE DIFERENCIAS DIVIDIDAS PARA APROXIMAR LAS DERIVADAS EN ESTE TIPO DE PROBLEMAS ES UNA TECNICA QUE EMPLEAMOS CON FRECUENCIA, DISTINGUIMOS EN ESTE ASPECTO A SU VEZ DOS FAMILIAS DE PROCESOS: CON Y SIN MEMORIA, EN ESTE CAMPO, TRABAJAMOS INDISTINTAMENTE CON ECUACIONES ESCALARES Y CON SISTEMAS DE ECUACIONES, OTRA LINEA DE TRABAJO SE DEDICA A LOS METODOS DIRECCIONALES, ESPECIFICAMENTE DISEÑADOS PARA ECUACIONES NO LINEALES, Y CON APLICACIONES EN PROBLEMAS DE OPTIMIZACION Y GEOMETRICOS (INTERSECCION DE SUPERFICIES), DEDICAMOS TAMBIEN UNA PARTE DE ESTE PROYECTO AL ESTUDIO DE METODOS HIBRIDOS, CONSISTENTES EN COMBINAR DOS O MAS PROCESOS ITERATIVOS PARA INTENTAR EXPLOTAR AL MAXIMO LAS VENTAJAS DE CADA UNO (VELOCIDAD DE CONVERGENCIA DEL UNO, REGION DE ACCESIBILIDAD DEL OTRO, ETC,), UNA DE LAS TECNICAS NOVEDOSAS QUE INTRODUCIMOS EN ESTE PROYECTO PARA CONSTRUIR PROCESOS ITERATIVOS EN LAS LINEAS ANTERIORES ES EL USO DE FUNCIONES PESO, DICHA TECNICA PERMITE AUMENTAR EL ORDEN DE CONVERGENCIA DE UN PROCESO ITERATIVO DADO SIN AUMENTAR DE MANERA EXCESIVA SU COSTE OPERACIONAL, DENTRO DEL ESTUDIO GENERAL DE LOS PROCESOS ITERATIVOS CONSTRUIDOS DE LAS DIFERENTES FORMAS CITADAS ANTERIORMENTE, HAREMOS ESPECIAL HINCAPIE EN EL ESTUDIO DE LO QUE OCURRE CUANDO SE APROXIMAN RAICES MULTIPLES, COMO NORMA GENERAL, SABEMOS QUE EL ORDEN DE CONVERGENCIA SE REDUCE DRASTICAMENTE EN ESTOS CASOS, PERO ADEMAS, EN EL CASO MULTIDIMENSIONAL, APARECEN OTROS PROBLEMAS ASOCIADOS CON LA SINGULARIDAD DE LA MATRIZ JACOBIANA O EL MAL CONDICIONAMIENTO CERCA DE LA SOLUCION,OTRA IMPORTANTE LINEA DE TRABAJO ES EL ANALISIS DE LA DINAMICA DE LOS METODOS ITERATIVOS, ESTUDIAREMOS DESDE UN PUNTO DE VISTA ANALITICO, NUMERICO Y GRAFICO CUESTIONES TALES COMO LAS CUENCAS DE ATRACCION DE LAS RAICES, LOS PLANOS DE PARAMETROS, LOS CONJUNTOS DE JULIA, LA PRESENCIA DE CICLOS ATRACTORES Y DE ATRACTORES EXTRAÑOS (PUNTOS FIJOS QUE NO SON SOLUCION DE LA ECUACION BUSCADA), LA CONVERGENCIA GENERAL Y LA PRESENCIA DE COMPORTAMIENTOS CAOTICOS, DESDOBLAMOS TODOS LOS ESTUDIOS REALIZADOS EN EL ESTUDIO DE LA DINAMICA REAL Y COMPLEJA, PUES AMBAS NO SON EQUIVALENTES Y UTILIZAN DIFERENTES HERRAMIENTAS Y RESULTADOS, EN OTRA LINEA DE INVESTIGACION ANALIZAMOS LA CONEXION ENTRE EL COMPORTAMIENTO DE LOS METODOS ITERATIVOS PARA RESOLVER ECUACIONES NO LINEALES CON LOS METODOS NUMERICOS PARA RESOLVER ECUACIONES DIFERENCIALES (PROBLEMAS DE VALOR INICIAL),SIN CERRAR LA PUERTA A OTRAS APLICACIONES, PRESTAREMOS ESPECIAL ATENCION A DOS APLICACIONES CONCRETAS QUE NECESITAN DE LA RESOLUCION DE ECUACIONES NO LINEALES PARA SU RESOLUCION: LOS PROBLEMAS DE OPTIMIZACION NO LINEAL Y LAS ECUACIONES MATRICIALES NO LINEALES, MÉTODO DE NEWTON\ECUACIÓN NO LINEAL\CONVERGENCIA\DINÁMICA REAL Y COMPLEJA\OPTIMIZACIÓN NO LINEAL\ECUACIÓN MATRICIAL