Determining the mechanisms of lipid-targeting antibiotics in intact bacteria
Antimicrobial resistance is a major threat to global health. To combat this threat, new antibiotics with novel binding modes are urgently needed. Ideal candidates could be lipid-targeting antibiotics (LT-antibiotics) that target s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-126625OB-I00
NUEVOS FARMACOS INHIBIDORES DE CARBAPENEMASAS. DESCUBRIMIENT...
194K€
Cerrado
PDC2021-121544-I00
DISEÑO DE UNA NUEVA CLASE DE ANTIMICROBIANOS CONTRA INFECCIO...
133K€
Cerrado
AnLeadOp
Antibiotic Lead Optimization
150K€
Cerrado
BFU2014-59389-P
BIOLOGIA ESTRUCTURAL DE PROCESOS CRITICOS DE REMODELADO DE L...
399K€
Cerrado
PID2021-124464NB-I00
LA RESPUESTA BACTERIANA A FAGOS MAS ALLA DE LOS SISTEMAS CRI...
121K€
Cerrado
TRANSLOCATION
Molecular basis of the outer membrane permeability
30M€
Cerrado
Información proyecto champANTIBIOTICS
Duración del proyecto: 60 meses
Fecha Inicio: 2022-05-25
Fecha Fin: 2027-05-31
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Antimicrobial resistance is a major threat to global health. To combat this threat, new antibiotics with novel binding modes are urgently needed. Ideal candidates could be lipid-targeting antibiotics (LT-antibiotics) that target special lipids that only exist in bacterial, but not in human cell membranes. These drugs kill refractory pathogens without detectable resistance. This has generated huge interest. So far, the molecular mechanisms of LT-antibiotics have proven elusive due to technical challenges: 1) structures of small drug?lipid complexes in membranes cannot be solved by traditional methods; 2) LT-antibiotics need to oligomerize to become active; and 3) binding modes are strongly affected by cell membrane profiles. In consequence, it has been impossible to visualize native binding modes and an entire class of potent antibiotics remains poorly understood. In pioneering studies on the drug teixobactin, my lab recently presented the first quantitative insights into the mechanisms of LT-antibiotics in cell membranes. Strikingly, we discovered that teixobactin uses a novel ?double attack? type of antimicrobial action, in which teixobactin forms large oligomers that both block the peptidoglycan synthesis and damage bacterial membranes. These findings raise new questions about LT-antibiotics. I propose to establish a comprehensive understanding of LT-antibiotics by elucidating their native binding modes in intact bacteria and at several length-scales (? to ?m). To this end, I will develop solid-state NMR methods, isotope-labelling strategies, and super-resolution microscopy setups. With these tools, I will elucidate the mechanisms of some of the most promising antibiotics of our time: 1) novel drugs from unculturable bacteria; and 2) daptomycin, a front-line drug whose mechanism has been chased by two generations of scientists. This research will outline groundbreaking strategies for determining antibiotic mechanisms and, in so doing, address a pressing