Eukaryotic genomes are packaged into chromatin, which restricts access to the DNA. Key genomic processes therefore involve the rearrangement of chromatin by ATP-dependent chromatin remodelling enzymes (remodellers), which actively...
Eukaryotic genomes are packaged into chromatin, which restricts access to the DNA. Key genomic processes therefore involve the rearrangement of chromatin by ATP-dependent chromatin remodelling enzymes (remodellers), which actively place and reorganise nucleosomes. The precise positioning of nucleosomes plays a crucial role in regulating transcription, replication, and DNA repair. DNA sequence impacts this nucleosome architecture by affecting the activity of remodellers. However, what mechanisms underlie this critical sequence dependence in remodelling remains unknown. Here, we propose to address this longstanding question based on the following rationale: the nucleosome represents a highly constrained substrate with many histone-DNA interactions. Remodeller action therefore involves multiple sequential catalytic cycles and a series of transient structural intermediates of the nucleosome. We hypothesise that the nature and stability of these intermediates determine the effects of DNA sequence on remodelling. Probing this hypothesis requires the direct observation of transient remodelling intermediates as a function of sequence at the genome scale, which cannot be achieved with currently existing methods. We aim to address this major challenge by developing a novel high-throughput platform that combines, for the first time, single-molecule measurements of complex dynamics with next-generation sequencing. This platform will enable the comprehensive profiling of sequence-dependent processes at the single-molecule level. We will leverage the platform in combination with molecular simulations and in vivo experiments to gain groundbreaking insights into the mechanisms of sequence-dependent remodelling and its role in the establishment of chromatin architecture. Ultimately, we expect to decipher how the dynamic landscape of nucleosome intermediates - encoded in the sequence wrapped around the histone core - impacts nucleosome function in vivo.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.