Decoding the Multi-facets of Cellular Identity from Single-cell Data
Advances in technologies that measure gene expression at single-cell resolution have revolutionized our understanding of the heterogeneity, structure and dynamics of tissues and whole organisms in health and disease. Yet, in most...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MULTIview-CELL
Integration of single-cell multi-omics data across space and...
1M€
Cerrado
PID2021-126718OA-I00
NUEVA APROXIMACION COMPUTACIONAL PARA LA CARACTERIZACION DE...
115K€
Cerrado
SIMBAD
Statistical Inference from Multiscale Biological Data: theor...
741K€
Cerrado
PTQ-08-03-07929
Desarrollo de una Herramienta de Análisis de Vías de Señaliz...
50K€
Cerrado
TIN2015-71079-P
MODELOS MARKOVIANOS GRAFICOS DE ORDEN LIMITADO EN LA GENOMIC...
43K€
Cerrado
PID2021-124757NB-I00
DESARROLLO DE MODELOS QUANTITATIVOS PARA ENTENDER LA EVOLUCI...
284K€
Cerrado
Información proyecto DecodeSC
Duración del proyecto: 66 meses
Fecha Inicio: 2022-03-18
Fecha Fin: 2027-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Advances in technologies that measure gene expression at single-cell resolution have revolutionized our understanding of the heterogeneity, structure and dynamics of tissues and whole organisms in health and disease. Yet, in most single-cell experiments tissue structure, temporal trajectories, and their underlying mechanisms are lost or not directly accessible. Despite experimental advances, major gaps remain in understanding how tissues orchestrate multicellular functions. In recent years, we and others focused on computationally recovering single facets of single-cell data, such as tissue structure or differentiation trajectories. However, each cell encodes multiple layers of information about its type, location, and various biological processes. Disentangling these signals from large-scale, high-dimensional single-cell data is a major challenge. Building on my expertise in network reconstruction, probabilistic spatial inference and spectral analysis of single-cell data, I will take a unique approach to this challenge by developing computational methodologies combining machine learning and dynamical systems approaches to: (1) tease apart multiple cellular facets encoded in single-cell data; (2) infer interactions between these facets and mechanisms shaping spatiotemporal expression across them; (3) derive generative models to sample and predict unobserved cell states and design optimal perturbations, providing an interpretable platform to study conditions leading to a physiological disruption and therapies aimed at reversing it. My research program will tackle the core challenge in the single-cell era - transforming this exponentially growing, complex data into insight and principles for the underlying biology of multicellular systems. It will advance our understanding and control of collective tissue behavior, and uncover the multiple facets of cellular identity in health and disease, and thus expected to be valuable for both basic and translational research.