Statistical Inference from Multiscale Biological Data: theory, algorithms, appli...
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
The last two decades have witnessed giant experimental breakthroughs in different areas of the life sciences, from genomics to epidemiology. Thanks to modern high-throughput techniques, biological systems across multiple scales –f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
INFERNET
New algorithms for inference and optimization from large sca...
900K€
Cerrado
PhyCogy
From Foundations of Phylodynamics to New Applications in Cel...
2M€
Cerrado
STATegra
User driven Development of Statistical Methods for Experimen...
8M€
Cerrado
INTERCROSSING
Innotive Training Environment for Researchers Combining the...
4M€
Cerrado
BFU2009-08611
APLICACIONES FILOGENETICAS Y FUNCIONALES DE LOS MODELOS DE E...
200K€
Cerrado
SCARABEE
Scalable inference algorithms for Bayesian evolutionary epid...
2M€
Cerrado
Información proyecto SIMBAD
Duración del proyecto: 49 meses
Fecha Inicio: 2023-10-20
Fecha Fin: 2027-11-30
Líder del proyecto
POLITECNICO DI TORINO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
741K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The last two decades have witnessed giant experimental breakthroughs in different areas of the life sciences, from genomics to epidemiology. Thanks to modern high-throughput techniques, biological systems across multiple scales –from single molecules up to entire populations– can now be probed quantitatively at high spatial and temporal resolutions. Besides enhancing our basic knowledge of a system’s constituents, these data potentially encode a plethora of information about the functional constraints that govern its evolution and the physical constraints that limit its performance, as well as about levels of organization, dynamical constraints or design principles that would be hard to identify from low-throughput data. Extracting this information is also crucial for applications ranging from the design of proteins with a desired functionality to the reconstruction of contacts during an epidemics. Inverse statistical mechanics attempts to do it by inferring generative models (Boltzmann distributions) from data using methods from the physics of disordered and random systems. Specific characteristics of biological data however, like strong undersampling and heterogeneity, limit the effectiveness of these tools. SIMBAD aims at developing a class of statistical inference techniques capable of overcoming these issues. In SIMBAD, theoretical work will supply concepts and methods to address four pressing problems (learning protein sequence landscapes, inverse modeling metabolic networks, inferring contact networks from epidemiological data, and improving survival analysis models), which in turn will guide the theory towards integration with the existing standards of each field. This effort promises to open new pathways for basic research to impact economic, technological and societal issues; the high- profile cross-disciplinary expertise represented in SIMBAD ensures instead for measurable and achievable objectives, placing SIMBAD in an ideal position to achieve its goals