Bayesian Statistics in Infinite Dimensions TargetingPriors by Mathematical Anal...
Bayesian Statistics in Infinite Dimensions TargetingPriors by Mathematical Analysis
I propose novel methods for understanding key aspects that are essential
to the future of Bayesian inference for high- or infinite-dimensional
models and data. By combining my expertise on empirical processes and
likelihood theor...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-104790GB-I00
CUANTIFICACION BAYESIANA DE LA INCERTIDUMBRE EN SELECCION DE...
46K€
Cerrado
PID2019-109387GB-I00
ESTADISTICA INFINITO-DIMENSIONAL: MODELOS MATEMATICOS Y COMP...
65K€
Cerrado
MTM2011-23998
TECNICAS PROBABILISTICAS Y DE APROXIMACION EN TEORIA DE LA I...
19K€
Cerrado
RYC-2017-22544
Graphical models with latent variables: geometry and inferen...
309K€
Cerrado
EPIMP
Epistemic Utility for Imprecise Probability
1M€
Cerrado
Información proyecto InfiniteBayesian
Líder del proyecto
UNIVERSITEIT LEIDEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
I propose novel methods for understanding key aspects that are essential
to the future of Bayesian inference for high- or infinite-dimensional
models and data. By combining my expertise on empirical processes and
likelihood theory with my recent work on posterior contraction I shall
foremost lay a mathematical foundation for the Bayesian solution to
uncertainty quantification in high dimensions.
Decades of doubt that Bayesian methods can work for high-dimensional
models or data have in the last decade been replaced by a belief that
these methods are actually especially appropriate in this
setting. They are thought to possess greater capacity for
incorporating prior knowledge and to be better able to combine data
from related measurements. My premise is that for high- or
infinite-dimensional models and data this belief is not well founded,
and needs to be challenged and shaped by mathematical analysis.
My central focus is the accuracy of the posterior distribution as
quantification of uncertainty. This is unclear and has hardly been
studied, notwithstanding that it is at the core of the Bayesian
method. In fact the scarce available evidence on Bayesian credible
sets in high dimensions (sets of prescribed posterior probability)
casts doubt on their ability to capture a given truth. I shall discover
how this depends strongly on the prior distribution, empirical or
hierarchical Bayesian tuning, and posterior marginalizaton, and therewith
generate guidelines for good practice.
I shall study these issues in novel statistical settings (sparsity and
large scale inference, inverse problems, state space models,
hierarchical modelling), and connect to the most recent, exciting
developments in general statistics.
I work against a background of data-analysis in genetics, genomics,
finance, and imaging, and employ stochastic process theory,
mathematical analysis and information theory.