The overall aim of FILOSE is acquiring a deeper understanding of the principles underlying fish locomotion and sensing, in order to develop new technologies for underwater vehicles on the basis of biological evidence. More specif...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-095939-B-I00
UNDERWATER HYBRID LEGGED ROBOT FOR RESEARCH ON KINEMATICS, D...
174K€
Cerrado
DPI2015-71645-P
CONTROL DE LA CANTIDAD DE MOVIMIENTO EN LA ESTELA DE SISTEMA...
159K€
Cerrado
DPI2014-57220-C2-1-P
"ROBOT ACTUADO POR CABLES PARA INVESTIGAR Y DESARROLLAR EL C...
191K€
Cerrado
DPI2009-08778
INVESTIGACION EN NAVEGACION VECTORIAL Y CONTROL DE MANIPULAC...
214K€
Cerrado
RTI2018-094960-B-I00
LOCOMOCION DE MEMS BASADA EN PLACAS ACCIONADAS PIEZOELECTRIC...
245K€
Cerrado
AUTODROP
Development of a novel autonomous vehicle significantly redu...
1M€
Cerrado
Información proyecto FILOSE
Líder del proyecto
TALLINNA TEHNIKALIKOOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The overall aim of FILOSE is acquiring a deeper understanding of the principles underlying fish locomotion and sensing, in order to develop new technologies for underwater vehicles on the basis of biological evidence. More specifically, FILOSE focuses on shedding light on how fish exploit lateral line sensing in underwater environments. The lateral line provides fish with the ability to detect hydrodynamic patterns in the surrounding environment, thereby playing a key role in adapting to environmental changes. FILOSEs main goals are captured by the following objectives: 1. investigate fish locomotion in a controlled hydrodynamic environment, in particular addressing the issue of how fish react to changes in hydrodynamic patterns; 2. develop a novel mechanical design of an underwater fish robot, characterized by high maneuverability and low complexity; 3. develop a MEMS-based artificial lateral line; 4. develop a control method for the artificial fish, aimed at reproducing locomotion patterns found in biological fish and based on a central pattern generator (CPG); 5. develop a method to characterize and classify hydrodynamic images, making use of a mechanosensory array; 6. develop a classification method to couple detected hydrodynamic events with locomotion patterns found in biological fish; 7. conduct comparative experiments in a controlled hydrodynamic environment to assess behaviour of an artificial fish equipped with artificial lateral line sensing with respect to the behaviour of a biological fish. We believe that the proposed investigations are key to building underwater robots that improve on the existing by exhibiting a greater degree of autonomy, adaptability to environmental changes, maneuverability, stability and overall lower complexity, as well as moving more efficiently and quietly.