Innovating Works
LC-BAT-1-2019
LC-BAT-1-2019: Strongly improved, highly performant and safe all solid state batteries for electric vehicles (RIA)
Specific Challenge:International developments towards less air pollution and CO2 production are pushing towards a rapid implementation of electrification of transport. In addition, according to market forecasts, a rapid growth of the sales and deployment of battery electric vehicles (BEV) is predicted. Considering the global competition, the rush for better technology implies also the need for a better traction battery technology as a key enabling technology. Europe has to regain its competitiveness in markets that nowadays are dominated by non-European countries. This could occur by developing a new European owned battery technology.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 25-04-2019.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:International developments towards less air pollution and CO2 production are pushing towards a rapid implementation of electrification of transport. In addition, according to market forecasts, a rapid growth of the sales and deployment of battery electric vehicles (BEV) is predicted. Considering the global competition, the rush for better technology implies also the need for a better traction battery technology as a key enabling technology. Europe has to regain its competitiveness in markets that nowadays are dominated by non-European countries. This could occur by developing a new European owned battery technology.

Furthermore, an international tendency of Original Equipment Manufacturers (OEM) is to consider more and more the solid state technology as a solution that could replace the current Li-ion technology based on liquid electrolytes. The reason is the need of higher energy density, but also of inherently safe batteries.

New chemistries, materials and production technologies have to be developed to strengthen the European industrial base, in line with the EU initiatives as the Strategic Energy Technology Plan (SET Plan) Implementa... ver más

Specific Challenge:International developments towards less air pollution and CO2 production are pushing towards a rapid implementation of electrification of transport. In addition, according to market forecasts, a rapid growth of the sales and deployment of battery electric vehicles (BEV) is predicted. Considering the global competition, the rush for better technology implies also the need for a better traction battery technology as a key enabling technology. Europe has to regain its competitiveness in markets that nowadays are dominated by non-European countries. This could occur by developing a new European owned battery technology.

Furthermore, an international tendency of Original Equipment Manufacturers (OEM) is to consider more and more the solid state technology as a solution that could replace the current Li-ion technology based on liquid electrolytes. The reason is the need of higher energy density, but also of inherently safe batteries.

New chemistries, materials and production technologies have to be developed to strengthen the European industrial base, in line with the EU initiatives as the Strategic Energy Technology Plan (SET Plan) Implementation Plan for Action 7 ('Batteries') and in support of the Šefčovič battery initiative “EU Battery Alliance”, to be ready for market deployment by 2026.

This challenge is based on the results of previous calls and stakeholder consultations[1] and is supplementary to the topic published in the Sustainable Transport Challenge of 2019 on “Next generation of high energy density, fast chargeable lithium ion batteries”.


Scope:

Activities should develop further the current solid state battery technology and present solutions beyond the current state-of the art of solid state electrolytes that are suffering from various issues, e.g. a too high operating temperature, too low ion conductivity, too high impedance of the electrode electrolyte interface, short cycle life and lack of knowledge of suitable production technologies at a competitive cost. The ideal solid state battery and electrolyte would provide a solution for all these shortcomings.

Three dominant categories of electrolyte materials seem to emerge:

Inorganic electrolyte materials : Inorganic crystalline materials (e.g. perovskites, garnets, sulphides, Nasicon, e.g. suffering from high interfacial resistance and poor interface contacts, problems during cell assembly and/or cycling due to reactivity between solid electrolyte and electrodes);Inorganic amorphous materials (e.g. LiPON, glass oxides). Solid polymers/polymeric materials (e.g. polyethylene oxide, PIL, single-ion, e.g. suffering from low ionic conductivity, electrochemical stability, not suitable working temperature, Li dendrites) ;All solid state hybrid systems (e.g. suffering from low polymer stability at high voltages, and/or knowledge on details and behaviour of the interface in the composite). Solid state technology, according to a recent stakeholder proposal, has been classified in 2 sub-generations:

So called generation 4a with conventional Li-ion materials (as NMC/Si to be developed by 2020-2022) andSo called generation 4b with Li-metal as anode (to be developed by 2025-2030) This call addresses all three main categories of electrolyte materials mentioned above, and includes also solid state batteries of the so-called "post Lithium-ion" batteries (generation 4a and 4b), as e.g. solid state forms of Li-S or Li-air.

The work should include:

Cell design;Identification of problems and proposals of solutions to overcome issues hampering an optimal function of the specifically proposed electrolyte material(s) at bulk, surface, interface and grain boundary levels;In depth interface optimization, characterization and integration, including multiscale modelling which should target in particular problems of the ion transport processes at the interfaces of the solid state battery system;Demonstration of suitability to work with high voltage electrode materials, where applicable;IP protection and know how creation. A solid analysis and description of the state of the art of specific R&I and the patent situation has to be included. The developed cells should meet the typical EV operating conditions in a broad temperature range, i.e. 10 to 50 ºC. Moreover, the cells should demonstrate negligible loss of charge during lengthy standby periods at sub-zero temperatures. Fast charging requirements of BEV should be met. Cyclability should be suitable for application in BEV.

The choice of the electrolyte to be developed should be duly justified in terms of chances of market success in the coming years. Validation of a pre-industrial prototype in relevant industrial environment should include an assessment of the scale-up potential in view of large scale manufacturability.

The TRL level of the project should start at TRL 3 and reach TRL 6 at the end of the project.

The Commission considers that proposals requesting a contribution from the EU between EUR 6 and 8 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.


Expected Impact:

For generation 4a, an energy density >350 Wh/kg and >1000 Wh/l, for generation 4b a higher energy density >400 Wh/kg and >1200 Wh/l ;Fast charge rates above 10C with power density values >10000 W/kg as 2030 target;Proven safety;IPR protection guaranteed and demonstrated;Cost euro < 100euro/kWh;The European materials modelling capacity and ecosystem should be increased;The European battery value chain towards cell production in Europe should be strengthened. Relevant indicators and metrics, with baseline values, should be clearly stated in the proposal.

The proposal has to do a thorough Life Cycle Analysis cradle to cradle and consider recycling as far as possible.

This work contributes to the work developed in the running EC-EGVIA agreement and to EGVI related activities of the “Transport Challenges”.


Cross-cutting Priorities:Contractual Public-Private Partnerships (cPPPs)EGVILC-BATClean Energy


[1]"Innovative batteries for eVehicles Workshop", 12 May 2017, and

"European Battery Cell R&I Workshop", 11 - 12 January 2018, European Commission DG RTD

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:International developments towards less air pollution and CO2 production are pushing towards a rapid implementation of electrification of transport. In addition, according to market forecasts, a rapid growth of the sales and deployment of battery electric vehicles (BEV) is predicted. Considering the global competition, the rush for better technology implies also the need for a better traction battery technology as a key enabling technology. Europe has to regain its competitiveness in markets that nowadays are dominated by non-European countries. This could occur by developing a new European owned battery technology. Specific Challenge:International developments towards less air pollution and CO2 production are pushing towards a rapid implementation of electrification of transport. In addition, according to market forecasts, a rapid growth of the sales and deployment of battery electric vehicles (BEV) is predicted. Considering the global competition, the rush for better technology implies also the need for a better traction battery technology as a key enabling technology. Europe has to regain its competitiveness in markets that nowadays are dominated by non-European countries. This could occur by developing a new European owned battery technology.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme. 
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation (single-stage call): maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Research and Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
 
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information 1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme. 
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation (single-stage call): maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Research and Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
 
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
8. Additional documents:
1. Introduction WP 2018-20
20. Cross-cutting activities
18. Dissemination, Exploitation and Evaluation WP 2018-20
General annexes to the Work Programme 2018-2020
Legal basis: Horizon 2020 Regulation of Establishment
Legal basis: Horizon 2020 Rules for Participation
Legal basis: Horizon 2020 Specific Programme
 
7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-LC-BAT-2019-2020 Strongly improved, highly performant and safe all solid state batteries for electric vehicles (RIA) Specific Challenge:International developments towards less air pollution and CO2 production are pushing towards a rapid implementation of el...
Sin info.
LC-BAT-10-2020 Next generation and realisation of battery packs for BEV and PHEV
en consorcio: Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-8-2020 Next-generation batteries for stationary energy storage
en consorcio: Specific Challenge:Stationary applications such as utility grids and industrial sites require storage applications that have the ability to...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-9-2020 Hybridisation of battery systems for stationary energy storage
en consorcio: Specific Challenge:Advanced batteries are expected to play a major role in electricity grid management in systems with a high share of renew...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-11-2020 Reducing the cost of large batteries for waterborne transport
en consorcio: Specific Challenge:Large battery packs are increasingly deployed to improve the efficiency and to eliminate emissions from waterborne transp...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-14-2020 Self-healing functionalities for long lasting battery cell chemistries
en consorcio: Specific Challenge:Increasing our daily dependence on batteries calls for increased efforts in ensuring their quality, reliability and life...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de