Innovating Works
LC-BAT-10-2020
LC-BAT-10-2020: Next generation and realisation of battery packs for BEV and PHEV
Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary to increase the density of battery packs in terms of weight and package space in order to improve range and decrease weight. Moreover, shorter charging times for BEVs through high-power charging will enable travelling over longer distances, imposing further challenges on cooling needs. Higher performance of battery pack raises safety issues which require more robust and flexible advanced Battery Management Systems (BMS).
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 28-04-2020.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary to increase the density of battery packs in terms of weight and package space in order to improve range and decrease weight. Moreover, shorter charging times for BEVs through high-power charging will enable travelling over longer distances, imposing further challenges on cooling needs. Higher performance of battery pack raises safety issues which require more robust and flexible advanced Battery Management Systems (BMS).

Besides research on advanced electro-chemistries and cell manufacturing, which are not part of this topic, the integration of battery rechargeable cells into battery packs plays an important role. However, the manufacturing of battery primary cells and their electrochemistry influences their shape and thermal behaviour and hence also the way how they can be integrated into modules and battery packs.

Advanced concepts of BMS relating to hardware and software enabling cell/module/pack communication need to be developed in order to maximise the performance of the final battery system used in vehicles. Wh... ver más

Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary to increase the density of battery packs in terms of weight and package space in order to improve range and decrease weight. Moreover, shorter charging times for BEVs through high-power charging will enable travelling over longer distances, imposing further challenges on cooling needs. Higher performance of battery pack raises safety issues which require more robust and flexible advanced Battery Management Systems (BMS).

Besides research on advanced electro-chemistries and cell manufacturing, which are not part of this topic, the integration of battery rechargeable cells into battery packs plays an important role. However, the manufacturing of battery primary cells and their electrochemistry influences their shape and thermal behaviour and hence also the way how they can be integrated into modules and battery packs.

Advanced concepts of BMS relating to hardware and software enabling cell/module/pack communication need to be developed in order to maximise the performance of the final battery system used in vehicles. When aiming at large-scale production of high-density battery packs, manufacturing processes of modules, and their easy and efficient integration into packs need to take into consideration the choice of materials and requirements related to safety, quality, and fast and cost efficient fabrication.


Scope:Proposals will have to address all of the following technical areas for passenger car applications (developed module concept scalability to delivery vans, heavy duty vehicles or busses would be beneficial, but not obligatory. Same applies to concept transfer between BEV and PHEVs):

Design of advanced battery packs and systems satisfying lightweighting, crashworthiness, electrical and thermal requirements using advanced lightweight materials improved packaging, integration and modularity while considering aspects of ecodesign for manufacturing and dismantling (including their automation), reuse (second life) and recycling/sustainability, leading to a global LCA improvement.Development of specific solutions and processes for the sustainable dismantling and recycling of battery pack/modules and their materials, components and sub-systems taking into account safety and automation.Flexible advanced battery management systems capable of being used on different types of packs and mid-sized vehicles with different use patterns, and underlying provision to be used in second life applications.Advanced functionalities of battery management systems to enable control of modules and packs and their remote maintenance and troubleshooting, software updating and other functions. Safety and modularity aspects must be taken into account when increasing battery pack energy density. In addition, health and environmental aspects of advanced battery pack materials shall be considered over the lifecycle including cases of failure, and reuse/recycling.Development of high voltage systems compatible with high-power ultra-fast charging and related implications, including high and low temperature charging, insulation, advanced models (including for instance data mining and big data on existing databases) for monitoring thermal state and estimation of application-dependant State of Health (i.e. in first and second use).Development and qualification of future performance-related test procedures of developed functionalities under real-world conditions, incl. extreme environmental conditions.Concept validation of battery performance functionalities at full scale should be demonstrated through pack integration into an existing vehicle (no vehicle development can be included in claimed costs) which should also serve as a benchmark of achieved performance.Development and qualification of future safety related test procedures e.g. venting/management of gases, battery failure warning signals, thermal propagation. The combination of achieved improvements with new components and functionalities on the vehicle and infrastructure sides coming from topics LC-GV-01-2018, LC-GV-02-2018 and LC-GV-03-2019) should allow the development of new concepts for affordable FEVs which enable long duration trips (e.g. 700-1000km day trips across different Member States) with not more than respectively 60-90 minutes additional travel time in comparison with ICE vehicles and without additional degradation impact on the FEV powertrain including the battery when used for max 10% of the charging events.

The Commission considers that proposals requesting a contribution from the EU of between EUR 8 and 10 million would allow the specific challenge to be addressed appropriately.​ Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.


Expected Impact:Considerably improved performance of the EV through reduced battery system weight by 20% at constant electric vehicle range for mid-size battery electric car.Overcome the uncertainty of range by achieving 25% shorter recharging time with a 150kW charger compared to best in class electric car available on the market in 2018. The demonstrator must have the same battery capacity as the reference car and meet the useful battery life mentioned below.Improved attractiveness of the EV through achieving extended useful battery life to 300 000 km in real driving[1] referring to a mid-size passenger car using improved battery management, balancing and thermal management during high-power charging/discharging.Contribution to Circular Economy goals through a minimum 20% Life Cycle Analysis improvement compared to existing products.Considerably improved knowledge on module and pack sensorisation and thermal management.
Cross-cutting Priorities:LC-BATClean Energy


[1]A realistic driving cycle like WLTC can be used, adding simulated heating, defrosting and cooling consumption along the year and slow-medium charging for normal use plus a group of two consecutive fast charges to 80% every 6.000 km and one fast charge to 80% every 2000km.

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary to increase the density of battery packs in terms of weight and package space in order to improve range and decrease weight. Moreover, shorter charging times for BEVs through high-power charging will enable travelling over longer distances, imposing further challenges on cooling needs. Higher performance of battery pack raises safety issues which require more robust and flexible advanced Battery Management Systems (BMS). Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary to increase the density of battery packs in terms of weight and package space in order to improve range and decrease weight. Moreover, shorter charging times for BEVs through high-power charging will enable travelling over longer distances, imposing further challenges on cooling needs. Higher performance of battery pack raises safety issues which require more robust and flexible advanced Battery Management Systems (BMS).
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme.
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation (single-stage call): maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
 
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) &am...
1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme.
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation (single-stage call): maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
 
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
 
8. Additional documents:
1. Introduction WP 2018-20
18. Dissemination, Exploitation and Evaluation WP 2018-20
20. Cross-cutting activities WP 2018-20
General annexes to the Work Programme 2018-2020
Legal basis: Horizon 2020 Regulation of Establishment
Legal basis: Horizon 2020 Rules for Participation
Legal basis: Horizon 2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-LC-BAT-2019-2020 Next generation and realisation of battery packs for BEV and PHEV Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary...
Sin info.
LC-BAT-10-2020 Next generation and realisation of battery packs for BEV and PHEV
en consorcio: Specific Challenge:To accelerate the mass market take-up of battery electric vehicles (BEV) and plug-in hybrids (PHEV), it will be necessary...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-8-2020 Next-generation batteries for stationary energy storage
en consorcio: Specific Challenge:Stationary applications such as utility grids and industrial sites require storage applications that have the ability to...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-9-2020 Hybridisation of battery systems for stationary energy storage
en consorcio: Specific Challenge:Advanced batteries are expected to play a major role in electricity grid management in systems with a high share of renew...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-11-2020 Reducing the cost of large batteries for waterborne transport
en consorcio: Specific Challenge:Large battery packs are increasingly deployed to improve the efficiency and to eliminate emissions from waterborne transp...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
LC-BAT-14-2020 Self-healing functionalities for long lasting battery cell chemistries
en consorcio: Specific Challenge:Increasing our daily dependence on batteries calls for increased efforts in ensuring their quality, reliability and life...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de