Innovating Works
FCH-02-4-2020
FCH-02-4-2020: Flexi-fuel stationary SOFC
Specific Challenge:Solid Oxide Fuel Cell (SOFC) technology is mainly considered for stationary applications. The number of units installed is growing continuously around the world, for a wide range of power (kW to MW). One of its main advantages is that it can be easily fed by different fuels, not only pure hydrogen as it is the case with other fuel cell technologies. Currently, the reference fuel is natural gas abundantly available throughout EU at low cost. Fuel cells operated with natural gas from the grid reduce already significantly the amount of CO2 generated compared to other conventional heat and power generation systems thanks to their higher efficiency, however not entirely.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 29-04-2020.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Solid Oxide Fuel Cell (SOFC) technology is mainly considered for stationary applications. The number of units installed is growing continuously around the world, for a wide range of power (kW to MW). One of its main advantages is that it can be easily fed by different fuels, not only pure hydrogen as it is the case with other fuel cell technologies. Currently, the reference fuel is natural gas abundantly available throughout EU at low cost. Fuel cells operated with natural gas from the grid reduce already significantly the amount of CO2 generated compared to other conventional heat and power generation systems thanks to their higher efficiency, however not entirely.

In order to reach the target of greenhouse gases emissions reduction set by the EU, a reduction of the carbon footprint of the fuel has to be considered, for example by using renewable gases like biogas or hydrogen. In addition, in order to promote the storage of intermittent renewable energies through the power-to-gas concept, blending hydrogen with natural gas into the existing natural gas network is expected, though several questions remain open like the maximum admissible percentage o... ver más

Specific Challenge:Solid Oxide Fuel Cell (SOFC) technology is mainly considered for stationary applications. The number of units installed is growing continuously around the world, for a wide range of power (kW to MW). One of its main advantages is that it can be easily fed by different fuels, not only pure hydrogen as it is the case with other fuel cell technologies. Currently, the reference fuel is natural gas abundantly available throughout EU at low cost. Fuel cells operated with natural gas from the grid reduce already significantly the amount of CO2 generated compared to other conventional heat and power generation systems thanks to their higher efficiency, however not entirely.

In order to reach the target of greenhouse gases emissions reduction set by the EU, a reduction of the carbon footprint of the fuel has to be considered, for example by using renewable gases like biogas or hydrogen. In addition, in order to promote the storage of intermittent renewable energies through the power-to-gas concept, blending hydrogen with natural gas into the existing natural gas network is expected, though several questions remain open like the maximum admissible percentage of H2 in the natural gas and the seasonal variability of the content. The challenge is to have SOFCs able to operate under variable fuel mixtures whilst maintaining acceptable levels of performance.


Scope:The project should develop and demonstrate in a relevant environment a stationary solid oxide fuel cell system capable to operate under variable fuel mixtures with high electrical efficiency, high heat quality, long lifetime and able to reach the cost level of conventional fuel cell systems.

The project should evaluate the operation of stationary SOFCs designed for conventional natural gas over a wide range of gas compositions including H2 mixture in natural gas from zero to 100% and additions of biogas in the gas grid.

In order to take advantage of the long and costly development done so far on natural gas fed SOFC and of the high number of units already installed, it is expected that the project focuses on the adaptation of existing SOFC systems design made for natural gas to varying mixtures, with the aim of developing the next generation of “flexifuel” fuel cell systems.

The project consortium should include at least 2 SOFC system manufacturers based in EU or H2020 Associated Country.

The project should:

Evaluate experimentally at lab scale on stack and system level, how the change of fuel can modify the performance and the durability of the fuel cell, taking in particular into account the thermal management, which will be more complex and might affect SOFC lifetime;Implement required BoP components allowing the operation window from zero to 100% H2 in natural gas and with additions of purified biogas (CH4 and CO2, no pollutants);Define and validate an operation strategy adapted for a flexifuel operation;Demonstrate in relevant environment conditions and at system level, for at least 9 months, the operation in such flexifuel operating conditions; it should involve change of fuel (from 100% natural gas or biogas (potentially varying composition of biogas) to 100% H2, going through different levels of H2 admixtures in natural gas/biogas;Address safety and certification aspects in a suitable manner taking into account all relevant directives and regulations. These activities should take into account other FCH 2 JU projects working in this area. The project should bring the fuel cell system developed as close as possible to certification considering the applicable legal basis. TRL at start of project: 4 and TRL at the end of the project: 6.

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected] , which manages the European hydrogen safety reference database, HIAD and the Hydrogen Event and Lessons LEarNed database, HELLEN.

Activities developing test protocols and procedures for the performance and durability assessment of fuel cell components should foresee a collaboration mechanism with JRC (see section 3.2.B "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published FCH 2 JU harmonized testing protocols to benchmark performance and quantify progress at programme level.

The FCH 2 JU considers that proposals requesting a contribution from the EU of EUR 2.5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected duration: 4 years


Expected Impact:Flexifuel operation of SOFC systems should target to cover long-term EU policy perspectives. Consequently, the project is expected to have the following impacts:

Demonstration of long-term operation (> 6000 h) at stack level with degradation rate below 1%/1000h in the operation window from 0 to 100% H2 in natural gas, thus proving the tolerance of H2 content in natural gas up to 100%;Demonstrate that BoP components are compatible for this wide range of gas composition, by qualifying them for the 0-100% H2 in natural gas range in laboratory and by integrating them in SOFC systems;BoP components allowing to reach the CAPEX targeted by the 2024 MAWP values [56];Demonstrate the operation at system level in relevant environment, with an electrical efficiency >48% LHV for the whole operation window from 0 to 100% H2 in natural gas, a behaviour and a degradation rate similar to natural gas fed SOFC systems, and with availability >90% over the operating duration (9 months minimum);Confirmation that flexifuel operation mode allow to reach the lifetime and efficiencies targeted by the 2024 MAWP values, thus demonstrating that SOFC systems are fully hydrogen ready;Decrease of CO2 emissions of SOFC by at least 40% during operation as compared to a standard natural gas fuel cell fed system;Demonstrate that the primary energy reduction through cogeneration is available also to pure hydrogen networks. [56] https://www.fch.europa.eu/page/multi-annual-work-plan

The conditions related to this topic are provided in the chapter 3.3 of the FCH2 JU 2020 Annual Work Plan and in the General Annexes to the Horizon 2020 Work Programme 2018– 2020 which apply mutatis mutandis.


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Solid Oxide Fuel Cell (SOFC) technology is mainly considered for stationary applications. The number of units installed is growing continuously around the world, for a wide range of power (kW to MW). One of its main advantages is that it can be easily fed by different fuels, not only pure hydrogen as it is the case with other fuel cell technologies. Currently, the reference fuel is natural gas abundantly available throughout EU at low cost. Fuel cells operated with natural gas from the grid reduce already significantly the amount of CO2 generated compared to other conventional heat and power generation systems thanks to their higher efficiency, however not entirely. Specific Challenge:Solid Oxide Fuel Cell (SOFC) technology is mainly considered for stationary applications. The number of units installed is growing continuously around the world, for a wide range of power (kW to MW). One of its main advantages is that it can be easily fed by different fuels, not only pure hydrogen as it is the case with other fuel cell technologies. Currently, the reference fuel is natural gas abundantly available throughout EU at low cost. Fuel cells operated with natural gas from the grid reduce already significantly the amount of CO2 generated compared to other conventional heat and power generation systems thanks to their higher efficiency, however not entirely.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonst...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonstration of FC Coaches for regional passenger transport
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-6-2020: Demonstration of liquid hydrogen as a fuel for segments of the waterborne sector
The maximum FCH 2 JU contribution that may be requested is EUR 8 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-7-2020: Extending the use cases for FC trains through innovative designs and streamlined administrative framework
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-8-2020: Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
The maximum FCH 2 JU contribution that may be requested is EUR 3 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-5-2020: Underground storage of renewable hydrogen in depleted gas fields and other geological stores
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-6-2020: Electrolyser module for offshore production of renewable hydrogen
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-7-2020: Cyclic testing of renewable hydrogen storage in a small salt cavern
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-8-2020: Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-9-2020: Fuel cell for prime power in data-centres
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-03-2-2020: Decarbonising islands using renewable energies and hydrogen - H2 Islands
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
 
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Other conditions: For all actions of the call, the FCH 2 JU will activate the option for EU grants indicated under Article 30.3 of the Model Grant Agreement, regarding the FCH 2 JU’s right to object to transfers or licensing of results.
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan and its addendum
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2020-1 Flexi-fuel stationary SOFC Specific Challenge:Solid Oxide Fuel Cell (SOFC) technology is mainly considered for stationary applications. The number of units installed i...
Sin info.
FCH-02-5-2020 Underground storage of renewable hydrogen in depleted gas fields and other geological stores
en consorcio: Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-1-2020 Catalyst development for improved economic viability of LOHC technology
en consorcio: Specific Challenge:Hydrogen is a flexible energy carrier that can be produced from any energy source, and which can be converted into variou...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-8-2020 Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
en consorcio: Specific Challenge:In order to fight climate change, the need to reduce the emission of greenhouse gases will force the chemical industry to...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-6-2020 Electrolyser module for offshore production of renewable hydrogen
en consorcio: Specific Challenge:The foreseen magnitude of renewable electricity (RE) production requires the development of large-scale offshore wind and...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-7-2020 Cyclic testing of renewable hydrogen storage in a small salt cavern
en consorcio: Specific Challenge:The combination of variable renewable energy, electrolysers and geological stores can provide a means for capturing and h...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de