Innovating Works
FCH-02-5-2020
FCH-02-5-2020: Underground storage of renewable hydrogen in depleted gas fields and other geological stores
Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal mismatch between supply and demand. To balance this daily to seasonal mismatch it is necessary to have a large facility for storing and withdrawing VRE. Underground storage of gas molecules is cost efficient, environmentally friendly, and suitable for storing large amounts (e.g. more than 200 GWh per salt cavern or over 1,000 GWh in a gas field). The combination of VRE, electrolysers and geological storage can therefore provide a means for capturing and holding renewable energy at an unprecedented scale for satisfying time-varying energy demands. When moving towards a fully renewable system, very large volumes of hydrogen storage will be needed and the rates of energy transfer in/out the store will vary substantially across the day/year, with associated variations in pressure level. It is therefore important to understand whether EU can find a suitable storage option using its depleted gas or oil fields and other geological stores in a time-varying cyclic manner to buffer the future energy system with renewable energy.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 29-04-2020.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal mismatch between supply and demand. To balance this daily to seasonal mismatch it is necessary to have a large facility for storing and withdrawing VRE. Underground storage of gas molecules is cost efficient, environmentally friendly, and suitable for storing large amounts (e.g. more than 200 GWh per salt cavern or over 1,000 GWh in a gas field). The combination of VRE, electrolysers and geological storage can therefore provide a means for capturing and holding renewable energy at an unprecedented scale for satisfying time-varying energy demands. When moving towards a fully renewable system, very large volumes of hydrogen storage will be needed and the rates of energy transfer in/out the store will vary substantially across the day/year, with associated variations in pressure level. It is therefore important to understand whether EU can find a suitable storage option using its depleted gas or oil fields and other geological stores in a time-varying cyclic manner to buffer the future energy system with renewable energy.

Although pu... ver más

Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal mismatch between supply and demand. To balance this daily to seasonal mismatch it is necessary to have a large facility for storing and withdrawing VRE. Underground storage of gas molecules is cost efficient, environmentally friendly, and suitable for storing large amounts (e.g. more than 200 GWh per salt cavern or over 1,000 GWh in a gas field). The combination of VRE, electrolysers and geological storage can therefore provide a means for capturing and holding renewable energy at an unprecedented scale for satisfying time-varying energy demands. When moving towards a fully renewable system, very large volumes of hydrogen storage will be needed and the rates of energy transfer in/out the store will vary substantially across the day/year, with associated variations in pressure level. It is therefore important to understand whether EU can find a suitable storage option using its depleted gas or oil fields and other geological stores in a time-varying cyclic manner to buffer the future energy system with renewable energy.

Although pure hydrogen storage in salt caverns is practiced in some locations, hydrogen storage in depleted gas or oil fields has not been done anywhere in the world – only few attempts to inject hydrogen up to a certain percentage. Lab and field trials have shown that hydrogen can yield geochemical and microbiological reactions in the subsurface. Also, hydrogen has different mobility, dissolution and diffusion characteristics, when compared with natural gas. Some preliminary studies are indeed promising regarding the possibility of using the depleted fields for hydrogen storage, but further research and experimentation is required.


Scope:The main objectives of this topic are to research the feasibility of implementing large-scale storage of renewable hydrogen in depleted gas fields and other types of geological store, and to undertake a techno-economic assessment of how the underground storage of renewable hydrogen could facilitate achieving a zero-emissions energy system in EU by 2050.

Suitable geological stores should be identified and classified, together with information concerning nearby connecting infrastructure and wind/solar farms. The outstanding feasibility questions should be defined, and a research plan of laboratory and possibly field tests and literature surveys implemented to cover all questions concerning geological, microbiological, engineering and economic factors. The analysis should help clarify whether most of the hydrogen can be recovered, or if a significant percentage would be lost due to dissolution, diffusion, viscous fingering, chemical reactions or leakage.

Cyclability and longevity aspects of such stores should also be addressed. The geographical distribution across EU of all suitable types of geological store and their potential hydrogen capacities should be also identified.

A comprehensive techno-economic analysis of the considered approach should be undertaken, building on the findings of the HyUnder project [57], to examine the potential for its widespread implementation across the period 2025-2050. This should include (onshore and offshore) mapping of the proximity of suitable underground stores with existing and future wind/solar farms, modelling the production of renewable hydrogen, associated gas compression and hydrogen pipeline networks to transfer hydrogen to/from the stores, and identifying the profiles and amounts of renewable energy that can be buffered by such storage facilities to meet time-varying energy demands across all end use sectors. The developed model should identify how to match renewable supply with energy demand at all times by appropriately sizing and operating the technologies involved in producing, storing, distributing and using renewable hydrogen. Future scenarios should be formulated or existing scenarios/roadmaps should be reviewed for the EU to establish the considered approach at a prodigious scale by 2050.

In addition, the techno-economic feasibility of implementing hydrogen storage in preferred locations should be assessed to a level sufficient to support a decision whether or not to proceed to field pilot demonstration. This will provide substantial insights into the suitability for implementing such storage across EU and enable the development of positive business cases for adoption.

The project consortium should involve geologists to undertake expert analyses of underground storage opportunities for a wide range of sites across EU, both offshore and onshore.

TRL at start of the project: 3 and TRL at the end of the project: 5.

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected] , which manages the European hydrogen safety reference database, HIAD and the Hydrogen Event and Lessons LEarNed database, HELLEN.

“CertifHy Green H2“ guarantees of origin should be used through the CertifHy platform [58] to ensure that the hydrogen produced and injected underground is of renewable nature.

The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contribution above this amount will not be evaluated.

Expected duration: 2 years

[57] https://www.fch.europa.eu/page/cross-cutting-issues-0#HyUnder

[58] https://fch.europa.eu/page/certifhy-designing-first-eu-wide-green-hydrogen-guarantee-origin-new-hydrogen-market


Expected Impact:The project should:

Establish the geochemical, mineralogical and microbiological reactions occurring in geological stores in the presence of hydrogen;Improve understanding of the scalability of the demonstrated approach if replicated across Europe and the associated requirement for hydrogen infrastructure and renewable power sources;Provide a detailed techno-economic assessment of future scenarios for the EU to achieve widespread deployment of underground renewable hydrogen storage by 2050;Provide insights concerning the value chain and which parts need further study or development to establish positive business cases (covering technology development/selection, operation, location, system integration and other aspects). The conditions related to this topic are provided in the chapter 3.3 of the FCH2 JU 2020 Annual Work Plan and in the General Annexes to the Horizon 2020 Work Programme 2018– 2020 which apply mutatis mutandis.


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal mismatch between supply and demand. To balance this daily to seasonal mismatch it is necessary to have a large facility for storing and withdrawing VRE. Underground storage of gas molecules is cost efficient, environmentally friendly, and suitable for storing large amounts (e.g. more than 200 GWh per salt cavern or over 1,000 GWh in a gas field). The combination of VRE, electrolysers and geological storage can therefore provide a means for capturing and holding renewable energy at an unprecedented scale for satisfying time-varying energy demands. When moving towards a fully renewable system, very large volumes of hydrogen storage will be needed and the rates of energy transfer in/out the store will vary substantially across the day/year, with associated variations in pressure level. It is therefore important to understand whether EU can find a suitable storage option using its depleted gas or oil fields and other geological stores in a time-varying cyclic manner to buffer the future energy system with renewable energy. Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal mismatch between supply and demand. To balance this daily to seasonal mismatch it is necessary to have a large facility for storing and withdrawing VRE. Underground storage of gas molecules is cost efficient, environmentally friendly, and suitable for storing large amounts (e.g. more than 200 GWh per salt cavern or over 1,000 GWh in a gas field). The combination of VRE, electrolysers and geological storage can therefore provide a means for capturing and holding renewable energy at an unprecedented scale for satisfying time-varying energy demands. When moving towards a fully renewable system, very large volumes of hydrogen storage will be needed and the rates of energy transfer in/out the store will vary substantially across the day/year, with associated variations in pressure level. It is therefore important to understand whether EU can find a suitable storage option using its depleted gas or oil fields and other geological stores in a time-varying cyclic manner to buffer the future energy system with renewable energy.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonst...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
For some actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end-users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated.
FCH-01-4-2020: Standard Sized FC module for Heavy Duty applications
The maximum FCH 2 JU contribution that may be requested is EUR 7.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-5-2020: Demonstration of FC Coaches for regional passenger transport
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-6-2020: Demonstration of liquid hydrogen as a fuel for segments of the waterborne sector
The maximum FCH 2 JU contribution that may be requested is EUR 8 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-7-2020: Extending the use cases for FC trains through innovative designs and streamlined administrative framework
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-01-8-2020: Scale-up and demonstration of innovative hydrogen compressor technology for full-scale hydrogen refuelling station
The maximum FCH 2 JU contribution that may be requested is EUR 3 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-5-2020: Underground storage of renewable hydrogen in depleted gas fields and other geological stores
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-6-2020: Electrolyser module for offshore production of renewable hydrogen
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-7-2020: Cyclic testing of renewable hydrogen storage in a small salt cavern
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-8-2020: Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
The maximum FCH 2 JU contribution that may be requested is EUR 5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-02-9-2020: Fuel cell for prime power in data-centres
The maximum FCH 2 JU contribution that may be requested is EUR 2.5 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
FCH-03-2-2020: Decarbonising islands using renewable energies and hydrogen - H2 Islands
The maximum FCH 2 JU contribution that may be requested is EUR 10 million. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.
 
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Other conditions: For all actions of the call, the FCH 2 JU will activate the option for EU grants indicated under Article 30.3 of the Model Grant Agreement, regarding the FCH 2 JU’s right to object to transfers or licensing of results.
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan and its addendum
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2020-1 Underground storage of renewable hydrogen in depleted gas fields and other geological stores Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal...
Sin info.
FCH-02-5-2020 Underground storage of renewable hydrogen in depleted gas fields and other geological stores
en consorcio: Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-1-2020 Catalyst development for improved economic viability of LOHC technology
en consorcio: Specific Challenge:Hydrogen is a flexible energy carrier that can be produced from any energy source, and which can be converted into variou...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-8-2020 Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
en consorcio: Specific Challenge:In order to fight climate change, the need to reduce the emission of greenhouse gases will force the chemical industry to...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-6-2020 Electrolyser module for offshore production of renewable hydrogen
en consorcio: Specific Challenge:The foreseen magnitude of renewable electricity (RE) production requires the development of large-scale offshore wind and...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
FCH-02-7-2020 Cyclic testing of renewable hydrogen storage in a small salt cavern
en consorcio: Specific Challenge:The combination of variable renewable energy, electrolysers and geological stores can provide a means for capturing and h...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de