"The proposed research is focused on zero sets of random functions.
This is a rapidly growing area that lies at the crossroads of analysis,
probability theory and mathematical physics. Various instances of zero
sets of random f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
MTM2017-82160-C2-2-P
DEL ANALISIS ARMONICO A LA GEOMETRIA Y LOS SISTEMAS CUANTICO...
36K€
Cerrado
PID2021-123151NB-I00
PROPIEDADES ESTOCASTICAS EN TEORIA GEOMETRICA DE FUNCIONES
67K€
Cerrado
Información proyecto RandomZeroSets
Duración del proyecto: 88 meses
Fecha Inicio: 2016-05-03
Fecha Fin: 2023-09-30
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The proposed research is focused on zero sets of random functions.
This is a rapidly growing area that lies at the crossroads of analysis,
probability theory and mathematical physics. Various instances of zero
sets of random functions have been used to model different phenomena
in quantum chaos, complex analysis, real algebraic geometry, and
theory of random point processes.
The proposal consists of three parts. The first one deals with asymptotic
topology of zero sets of smooth random functions of several real variables.
This can be viewed as a statistical counterpart of the first half of Hilbert's 16th
problem. At the same time, it is closely related to percolation theory.
In the second and third parts, we turn to zero sets of random analytic functions
of one complex variable. The zero sets studied in the second part provide one
of few natural instances of a homogeneous point process with suppressed
fluctuations and strong short-range interactions. These point processes have
many features, which are in striking contrast with the ones of the Poisson point
process. One of these features is the coexistence of different Gaussian scaling
limits for different linear statistics.
The third part deals with zeroes of Taylor series with random and pseudo-random
coefficients. Studying these zero sets should shed light on the relation between
the distribution of coefficients of a Taylor series and the distribution of its zeroes,
which is still ""terra incognita'' of classical complex analysis."