The objective of this proposal is an investigation of the geometric structure of random spaces that arise in critical models of statistical physics. The proposal is motivated by inspiring yet non-rigorous predictions from the phys...
The objective of this proposal is an investigation of the geometric structure of random spaces that arise in critical models of statistical physics. The proposal is motivated by inspiring yet non-rigorous predictions from the physics community and the models studied are some of the most popular models in contemporary probability theory such as percolation, random planar maps and random walks.
One set of problems are on the topic of random planar maps and quantum gravity, a thriving field on the intersection of probability, statistical physics, combinatorics and complex analysis. Our goal is to develop a rigorous theory of these maps viewed as surfaces (rather than metric spaces) via their circle packing. The circle packing structure was recently used by the PI and Gurel-Gurevich to show that these maps are a.s. recurrent, resolving a major conjecture in this area. Among other consequences, this research will hopefully lead to progress on the most important open problem in this field: a rigorous proof of the mysterious KPZ correspondence, a conjectural formula from the physics literature allowing to compute dimensions of certain random sets in the usual square lattice from the corresponding dimension in the random geometry. Such a program will hopefully lead to the solution of the most central problems in two-dimensional statistical physics, such as finding the typical displacement of the self-avoiding walk, proving conformal invariance for percolation on the square lattice and many others.
Another set of problems is investigating aspects of universality in critical percolation in various high-dimensional graphs. These graphs include lattices in dimension above 6, Cayley graphs of finitely generated non-amenable groups and also finite graphs such as the complete graph, the Hamming hypercube and expanders. It is believed that critical percolation on these graphs is universal in the sense that the resulting percolated clusters exhibit the same mean-field geometry.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.