Unraveling the Functional Complexity of Cancer Genomes through Chromosome Engine...
Unraveling the Functional Complexity of Cancer Genomes through Chromosome Engineering
Cancers arise through genetic and epigenetic alterations that drive the transformation of single cells into malignant tumors. Among genetic changes, copy number alterations (CNAs) are recurrent chromosomal events that increase or...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-094009-B-I00
DETERMINANTES DE LA ESTRUCTURA EPIGENOMICA LATENTE EN CANCER...
182K€
Cerrado
SAF2012-31627
CARACTERIZACION MOLECULAR DEL PAPEL DE LOS COMPLEJOS REMODEL...
140K€
Cerrado
BFU2009-09074
IDENTIFICACION DE MECANISMOS CAUSANTES DE CANCER Y METASTASI...
593K€
Cerrado
PID2020-116003GB-I00
GENOMICA AVANZADA PARA EL ESTUDIO DE LA INTEGRIDAD DE CROMOS...
272K€
Cerrado
CancerCirculome
Circular DNA driven cancer genome remodeling
1M€
Cerrado
MitErrA
Mechanisms of cellular response to errors in mitosis: a new...
1M€
Cerrado
Información proyecto MACHETE
Duración del proyecto: 60 meses
Fecha Inicio: 2022-12-09
Fecha Fin: 2027-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cancers arise through genetic and epigenetic alterations that drive the transformation of single cells into malignant tumors. Among genetic changes, copy number alterations (CNAs) are recurrent chromosomal events that increase or decrease the dosage of specific regions of DNA, can affect up to 30% of a cancer cell genome, and are associated with poor clinical outcomes. Despite their pervasiveness, the functional effects of specific CNAs on cancer phenotypes remain largely unknown, as current approaches cannot faithfully recapitulate the unique properties of these chromosomal alterations. Indeed, CNAs can uniquely affect the expression of hundreds of linked genes and change DNA topology, which in turn can promote intra-tumor heterogeneity as illustrated by random segregation of oncogenes in extra chromosomal DNA (ecDNA). In order to study the functional role of CNAs in cancer, this proposal employs MACHETE, a novel genome engineering toolkit that enables the generation of megabase-sized deletions, gains, and oncogene amplification in ecDNA. Using pancreatic ductal adenocarcinoma (PDAC) as a disease model, we will engineer the major CNAs in this lethal tumor to dissect their role in immune evasion, metastasis, and response to therapy. Additionally, through sequential engineering we will study whether the order of CNA acquisition leads to divergent or convergent phenotypes, a highly relevant yet unexplored aspect of cancer biology. Overall, by combining the MACHETE genome engineering platform with in vivo cancer models and molecular approaches, this proposal will begin to systematically dissect the function of recurrent CNAs in PDAC, with direct implications for therapy. Importantly, the methods and conceptual framework of this proposal are broadly applicable to other cancers and diseases characterized by similar chromosomal alterations, where understanding their underlying biology may lead to a new class of CNA-based clinical targets.