"Singular integral operators form one of the most important classes of operators in Mathematical Analysis and its applications. Paraproducts are special operators from this class, which are at the same time the ""building blocks""...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PARAPRODUCTS
Líder del proyecto
UNIVERSITY OF GLASGOW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
162K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Singular integral operators form one of the most important classes of operators in Mathematical Analysis and its applications. Paraproducts are special operators from this class, which are at the same time the ""building blocks"" for general singular integral operators. These special singular integral operators are particularly useful in the study of certain partial differential equations . Similarly to multiplier operators like the classical Hilbert transform, they are characterized by the fact that their frequency singularity is localized in a single point. In the last ten years, there has been huge interest for a new kind of singular integrals: so-called modulation invariant Calderón-Zygmund operators, which main feature is that their frequency singularities are spread over large varieties. This is for example the case for the bilinear Hilbert transform, whose singularities localize in a line in the plane. Our project proposes the study of tensor products of singular integrals that mix both types of singularities, since these are defined by a symbol given by the product of a classical paraproduct symbol and a modulation invariant one. The main tool for such a task will be the time-frequency analysis, which has already been applied to great success in the modulation invariant setting. This project can be considered as the next basic step in the future evolution of modern singular integral theory."