The Glucocorticoid Receptor in Aging and Circadian Endocrinology
The pandemic is stressful for many. In response to stress, glucocorticoids are released. They play essential roles as endogenous hormones and clinically as drugs. High levels are associated with cardiometabolic disorders and with...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SIRAID
SIRT6 activation for countering age related metabolic diseas...
2M€
Cerrado
SAF2014-56995-JIN
HIPOGONADISMO INDUCIDO POR SOBREPESO COMO PRINCIPAL FACTOR E...
204K€
Cerrado
DORIAN
Developmental Origins of Healthy and Unhealthy Ageing The R...
4M€
Cerrado
SAF2015-67538-R
LA FISIOLOGIA DEL SENSADO Y SENALIZACION DE NUTRIENTES POR E...
169K€
Cerrado
MeLiLoN
Metabolic Networks that Link Longevity to Reproduction in Re...
2M€
Cerrado
BFU2014-51836-C2-2-R
ALTERACIONES CEREBRALES INDUCIDAS POR LA DIETA: DIFERENCIAS...
242K€
Cerrado
Información proyecto GRACE
Duración del proyecto: 62 meses
Fecha Inicio: 2023-03-02
Fecha Fin: 2028-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The pandemic is stressful for many. In response to stress, glucocorticoids are released. They play essential roles as endogenous hormones and clinically as drugs. High levels are associated with cardiometabolic disorders and with aging. In contrast, diets like caloric restriction ameliorate metabolic dysfunction and prolong lifespan. These diets, however, also increase glucocorticoids. Now the open question is: What are the molecular and physiological effects of increased hormone levels, and are these diets beneficial because or in spite of elevated glucocorticoids?
We recently found that nutrition reprograms glucocorticoid responses independently of the hormone level and that diurnal glucocorticoid action controls rhythmic gene expression to regulate circulating glucose and triglycerides during day and night. I hypothesize that the benefits of caloric restriction are due to higher glucocorticoid amplitudes, and that their study will uncover transcriptional features prolonging healthspan.
I propose to functionally distinguish between diet-induced positive and stress-induced negative glucocorticoid responses. GRACE will identify diet-specific, ‘rejuvenating’ transcriptional complexes and target genes, versus detrimental pathways triggered by excess glucocorticoids such as stress. Glucocorticoid receptor targets unique to caloric restriction will be determined via ChIP- and RNA-seq in Aim 1. The functional impact of diurnal glucocorticoid release will be dissected with a constitutively active receptor allele in Aim 2. I propose to map active transcriptional regulomes in caloric restriction, in youth and old age, by ChIP-MS in Aim 3. I postulate that enhanced glucocorticoid activity at the right time of day may boost circadian rhythms and promote longevity.
Ultimately, applying omics to study the molecular mechanisms of stress hormones will identify pathways and genes amenable to pharmacological or nutritional intervention for longer, healthier lives.