The ancestral vertebrate brain and its cellular diversification during evolution
"The question of how new organs originate and evolve is fundamental to understanding the evolution of complex animals. Recent single-cell genomics technologies permit detailed investigations of the evolutionary ""birth"" of organs...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PREMETAZOANEVOLUTION
Unravelling the unicellular prehistory of metazoans with fun...
2M€
Cerrado
brainTEaser
The role of transposable elements in human brain evolution
207K€
Cerrado
SongNeuroGen
Species discrimination in birds A behavioural neurogenomics...
1M€
Cerrado
KaryodynEVO
Evolutionary principles of nuclear dynamics and remodelling
2M€
Cerrado
FIS2014-57686-P
ESTRATEGIAS ADAPTATIVAS EN POBLACIONES VIRALES. HACIA LA IDE...
175K€
Cerrado
PID2021-125156NB-I00
REGLAS DE CONSERVACION DEL CEREBRO FILOTIPICO DE LOS VERTEBR...
133K€
Cerrado
Información proyecto VerteBrain
Duración del proyecto: 65 meses
Fecha Inicio: 2021-07-05
Fecha Fin: 2026-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The question of how new organs originate and evolve is fundamental to understanding the evolution of complex animals. Recent single-cell genomics technologies permit detailed investigations of the evolutionary ""birth"" of organs and constituent cell types. Here, we will scrutinize the origins and cellular evolution of the vertebrate brain by generating and analyzing extensive single-cell transcriptomic, epigenomic, and spatial transcriptomic data across species representing all major vertebrate lineages. The project has three interlaced aims:
In Aim 1, we will infer the cell type repertoire of the ancestral vertebrate brain and its regulatory and molecular foundations, by comparing single-cell data across the most diverged vertebrate species.
In Aim 2, we will trace the cell type diversification of the ancestral brain during evolution and underlying regulatory and molecular changes. We will first investigate the origination of two key cell types (oligodendrocytes and Purkinje cells) that underlie the emergence of neuron insulation and the cerebellum, respectively, thus facilitating functional elaborations of the jawed vertebrate brain. We will then compare rates of cellular evolution across brain structures and test the hypothesis that cell type innovation was most frequent in the pallium, which affords advanced cognitive functions and experienced massive structural changes during evolution.
In Aim 3, we will focus on the amniote pallium, a preeminent model for understanding neural tissue diversification. We will scrutinize the origins, development, and evolutionary relationships of cell types in three new structures: neocortex, dorsal ventricular ridge, and Wulst. Two of these structures – the neocortex in mammals and Wulst in birds – facilitated the convergent evolution of advanced cognitive abilities.
Overall, our work will provide an overview of the cellular evolution of the vertebrate brain and, more generally, illuminate principles of cell type evolution."