Evolutionary principles of nuclear dynamics and remodelling
Every eukaryote has a nucleus, a double lipid membrane-bound compartment that encapsulates the genome, but almost every nucleus is different - in shape, size, molecular composition, spatial organisation, and dynamics through the c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2014-57686-P
ESTRATEGIAS ADAPTATIVAS EN POBLACIONES VIRALES. HACIA LA IDE...
175K€
Cerrado
EvoChromoAdapt
The impact of chromatin on the evolution and adaptation of e...
184K€
Cerrado
Gap2bridge
Bridging the gap an evolutionary genomics approach to illum...
174K€
Cerrado
FIS2008-05273
EVOLUCION Y ORGANIZACION DE POBLACIONES HETEROGENEAS Y SU RE...
70K€
Cerrado
PPOEEC
Physical Properties Organization and Evolution of Eukaryoti...
100K€
Cerrado
GENCON
The evolutionary implications of genetic conflict
2M€
Cerrado
Información proyecto KaryodynEVO
Duración del proyecto: 64 meses
Fecha Inicio: 2022-11-29
Fecha Fin: 2028-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Every eukaryote has a nucleus, a double lipid membrane-bound compartment that encapsulates the genome, but almost every nucleus is different - in shape, size, molecular composition, spatial organisation, and dynamics through the cell cycle. Given its fundamental and universal functional roles in protecting the DNA and regulating the exchange of information and control machinery between genome and cytoplasm, one might ask the question: why are there so many ways to build and remodel a nucleus? Bringing together comparative genomics, phylogenetics, quantitative cell biology and experimental evolution in multiple microbial model systems drawn from across the eukaryotic tree, we set out to elucidate the genomic, biophysical and evolutionary factors that determine nuclear dynamics and remodelling - karyodynamics - within the context of cellular architecture and function. A comparative perspective driven by phylogenetics will enable us to separate universal principles of karyodynamics from species- and niche-specific adaptations, and dissect the reasons for the evolutionary and developmental plasticity that we observe experimentally. In turn, we can use these principles to infer, predict and validate phenotypes in novel and emerging model systems. Finally, a more comprehensive understanding of the mechanisms responsible for karyodynamic phenotypic diversity would allow us to reconstruct evolutionary trajectories all the way back to the origins of the nuclear compartment, a landmark event in the evolution of eukaryotes from an archaeal-bacterial symbiosis over 2 billion years ago.