Structure and scaling in computational field theories
"The numerical simulations that are used in science and industry require ever more sophisticated mathematics. For the partial differential equations that are used to model physical processes, qualitative properties such as conserv...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NEMESIS
NEw generation MEthods for numerical SImulationS
8M€
Cerrado
MTM2011-24766
METODOS COMPUTACIONALES FIABLES PARA PROBLEMAS DE DIMENSIONE...
47K€
Cerrado
GEOPARDI
Numerical integration of Geometric Partial Differential Equa...
972K€
Cerrado
FEEC-A
Finite Element Exterior Calculus and Applications
2M€
Cerrado
DAFNE
Discretization and adaptive approximation of fully nonlinear...
1M€
Cerrado
MTM2010-21037
RESOLUCION DE PROBLEMAS DE VALOR INICIAL Y DE CONTORNO; TECN...
77K€
Cerrado
Información proyecto STUCCOFIELDS
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The numerical simulations that are used in science and industry require ever more sophisticated mathematics. For the partial differential equations that are used to model physical processes, qualitative properties such as conserved quantities and monotonicity are crucial for well-posedness. Mimicking them in the discretizations seems equally important to get reliable results.
This project will contribute to the interplay of geometry and numerical analysis by bridging the gap between Lie group based techniques and finite elements. The role of Lie algebra valued differential forms will be highlighted. One aim is to develop construction techniques for complexes of finite element spaces incorporating special functions adapted to singular perturbations. Another is to marry finite elements with holonomy based discretizations used in mathematical physics, such as the Lattice Gauge Theory of particle physics and the Regge calculus of general relativity. Stability and convergence of algorithms will be related to differential geometric properties, and the interface between numerical analysis and quantum field theory will be explored. The techniques will be applied to the simulation of mechanics of complex materials and light-matter interactions."