Relevant partial differential equations (PDEs) problems of the 21st century, including those encountered in magnetohydrodynamics and geological flows, involve severe difficulties linked to: the presence of incomplete differential...
Relevant partial differential equations (PDEs) problems of the 21st century, including those encountered in magnetohydrodynamics and geological flows, involve severe difficulties linked to: the presence of incomplete differential operators related to Hilbert complexes; nonlinear and hybrid-dimensional physical behaviors; embedded/moving interfaces. The goal of the NEMESIS project is to lay the groundwork for a novel generation of numerical simulators tackling all of the above difficulties at once. This will require the combination of skills and knowledge resulting from the synergy of the PIs, covering distinct and extremely technical fields of mathematics: numerical analysis, analysis of nonlinear PDEs, and scientific computing. The research program is structured into four tightly interconnected clusters, whose goals are: the development of Polytopal Exterior Calculus (PEC), a general theory of discrete Hilbert complexes on polytopal meshes; the design of innovative strategies to boost efficiency, embedded into a general abstract Multilevel Solvers Convergence Framework (MSCF); the extension of the above tools to challenging nonlinear and hybrid-dimensional problems through Discrete Functional Analysis (DFA) tools; the demonstration through proof-of-concept applications in magnetohydrodynamics (e.g., nuclear reactor models or aluminum smelting) and geological flows (e.g., flows of gas/liquid mixtures in underground reservoirs with fractures, as occurring in CO2 storage). This project will bring key advances in numerical analysis through the introduction of entirely novel paradigms such as the PEC and DFA, and in scientific computing through MSCF. The novel mathematical tools developed in the project will break long-standing barriers in engineering and applied sciences, and will be implemented in a practitioner-oriented open-source library that will boost design and prediction capabilities in these fields.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.