Single molecule analysis of DNA polymerase in vitro and in vivo a machine in ac...
Single molecule analysis of DNA polymerase in vitro and in vivo a machine in action
DNA polymerases are dynamic molecular machines that faithfully copy genetic information during DNA replication and DNA repair. DNA polymerases use the information in a DNA template strand to synthesize a complementary copy by addi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2008-00215
REPLICACION DEL DNA DE Ø29 INICIADA CON PROTEINA TERMINAL
425K€
Cerrado
PGC2018-093576-B-C21
DESCIFRANDO NUEVAS FUNCIONES DE DNA POLIMERASAS HUMANAS ESPE...
291K€
Cerrado
PRE2018-083263
COMPLEJOS MACROMOLECULARES EN LOS PROCESOS DE REPLICACION Y...
93K€
Cerrado
PRE2019-087848
DESCIFRANDO NUEVAS FUNCIONES DE DNA POLIMERASAS HUMANAS ESPE...
98K€
Cerrado
BFU2012-37969
NUEVAS POLIMERASAS IMPLICADAS EN REPLICACION Y REPARACION DE...
322K€
Cerrado
BES-2013-062829
NUEVAS POLIMERASAS IMPLICADAS EN REPLICACION Y REPARACION DE...
84K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
DNA polymerases are dynamic molecular machines that faithfully copy genetic information during DNA replication and DNA repair. DNA polymerases use the information in a DNA template strand to synthesize a complementary copy by adding nucleotides to the 3 -end of a DNA primer. Extensive analysis has provided information on the structural organization of polymerases and led to proposals of a general scheme for nucleotide addition. However, there are many unanswered questions; we cannot really claim that we understand how the polymerase machine works in detail and how its function is modulated by its substrates, or by the intracellular environment of cells. One of the main reasons lies in the fact that crystal structures cannot directly capture the dynamics of multi-step processes, since the structures are static snapshots of structural states. Another limitation arises from the difficulty of interpreting biochemical studies of complex mechanisms, because of complications due to ensemble- and time-averaging of the observed signals.
We propose to overcome these limitations by studying DNA synthesis by a proofreading DNA polymerase (Pol I) through direct, real-time observation of its movements and interactions at the single-molecule level. We will study mechanisms of fidelity through comparisons involving mutant polymerases, mispaired nucleotides, or partially mispaired DNA, and make comparisons with RNA polymerases. We will also study the conformation and subcellular localisation of Pol I in bacterial cells. Our specific aims are:
1. To study conformational transitions of the DNA polymerase I fingers subdomain
2. To study translocational dynamics of DNA polymerase I on DNA substrates
3. To study the coupling of DNA polymerase I motions during nucleotide addition
4. To study conformational dynamics of DNA polymerase I during nick translation
5. To study the subcellular localization and conform