Sharply o-minimal Structures: towards a theory of arithmetically tame geometry
"O-minimality is a model-theoretic formalism of tame geometry. Sets that are definable in o-minimal structures enjoy strong finiteness properties, such as the existence of finite stratifications and triangulations. While drawing i...
"O-minimality is a model-theoretic formalism of tame geometry. Sets that are definable in o-minimal structures enjoy strong finiteness properties, such as the existence of finite stratifications and triangulations. While drawing inspiration from the classical areas of semialgebraic and subanalytic geometry, o-minimality encompasses a strictly larger range of structures - most notably structures defined using the logarithmic and exponential functions. In the past 15 years o-minimality has enjoyed a golden age, as deep connections relating these larger structures to arithmetic geometry and Hodge theory have been unfolding. However, over this period it has become clear that some finer aspects of tameness, especially as it relates to arithmetic, are not accessible in the full generality of o-minimal theory. Some prominent conjectures have been formulated only for specific structures, with a folklore expectation that they should hold in all structures naturally arising in algebraic and arithmetic geometry.
In this project we propose to refine the foundation of o-minimal geometry by introducing a notion of ""sharply o-minimal structures'', with the goal of capturing the finer arithmetic properties of the definable sets arising in algebraic and arithmetic geometry. We argue that this should be achieved by postulating sharper estimates for the asymptotic interaction between definable and algebraic sets. The construction of such ""sharp"" structures has until recently seemed technically unattainable, but three recent technical developments, including the first example of a sharply o-minimal structure beyond the semialgebraic case, renders the project timely and potentially feasible. We show how many recent advances in the area point to sharp o-minimality as a possible grand unifying framework, and illustrate how a realization of this program would greatly simplify, strengthen and generalize many of the state of the art applications of o-minimality."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.