"Enumerative geometry is the field of algebraic geometry dealing with counting geometric objects satisfying constraints. For instance, in Ancient Greece, Apollonius asked how many circles are tangent to three given circles in the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NAMirror
Non archimedean Mirror Symmetry
1M€
Cerrado
MSAG
Mirror symmetry in Algebraic Geometry
2M€
Cerrado
BoundModProbAG
Boundedness and Moduli problems in birational geometry
191K€
Cerrado
HyperK
Modern Aspects of Geometry Categories Cycles and Cohomolog...
9M€
Cerrado
PID2021-124440NB-I00
GEOMETRIA ALGEBRAICA Y APLICACIONES A LA FISICA MATEMATICA
73K€
Cerrado
TameHodge
Tame geometry and transcendence in Hodge theory
2M€
Cerrado
Información proyecto FourSurf
Duración del proyecto: 64 meses
Fecha Inicio: 2023-04-05
Fecha Fin: 2028-08-31
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Enumerative geometry is the field of algebraic geometry dealing with counting geometric objects satisfying constraints. For instance, in Ancient Greece, Apollonius asked how many circles are tangent to three given circles in the plane. It is a very active area due to unexpected connections with other fields of mathematics and physics. So far, modern enumerative geometry is largely about counting curves. Recently I worked on foundations for a theory for counting surfaces in 4-dimensional spaces. This is the starting point of this proposal, which is about discovering new properties of 4-dimensional spaces using surface counting.
Project A explores surface counting in Calabi-Yau, hyper-Kähler, and Abelian fourfolds in a series of concrete settings. The impact is this: when the count is non-zero for some (2,2) class γ on X, then it implies the variational Hodge conjecture for (X,γ). The Hodge conjecture is one of the millennium prize problems and the first open case is for (2,2) classes on 4-dimensional spaces.
Project B investigates 4-dimensional singularities. It is about discovering a connection between the geometry and algebra hidden in the singularity called ""crepant resolution conjecture"". The impact is this: for 3-dimensional singularities the crepant resolution conjecture does not work when surfaces get contracted. By embedding 3-dimensional singularities in 4 dimensions, I expect to solve this open case.
Project C shifts from counting surfaces in 4-dimensional space to counting representations of 4-dimensional non-commutative rings. The same move for 3-dimensional rings opened up an entire field, and this project will do the same for 4-dimensional rings. Interesting examples include Sklyanin algebras, non-commutative resolutions of 4D Gorenstein singularities, and quantum Fermat sextic fourfolds.
The common denominator of these projects is that they involve 4D phenomena that could previously not be explored and are made accessible by this proposal."