This project will develop a mathematical theory of sample complexity, i.e. of finite measurements, for inverse problems in partial differential equations (PDE). Inverse problems are ubiquitous in science and engineering, and appea...
ver más
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
This project will develop a mathematical theory of sample complexity, i.e. of finite measurements, for inverse problems in partial differential equations (PDE). Inverse problems are ubiquitous in science and engineering, and appear when a quantity has to be reconstructed from indirect measurements. Whenever physics plays a crucial role in the description of an inverse problem, the mathematical model is based on a PDE. Many imaging modalities belong to this category, including ultrasonography, electrical impedance tomography and photoacoustic tomography. Many different PDE appear, depending on the physical domain. Currently, there is a substantial gap between theory and practice: all theoretical results require infinitely many measurements, while in all applied studies and practical implementations, only a finite number of measurements are taken. We argue that this gap is crucial, since the number of measurements is usually not very large, and has important consequences, regarding the choice of measurements, the priors on the unknown and the reconstruction algorithms. Many safe and effective modalities have had very limited use due to low reconstruction quality. Within a multidisciplinary approach, by combining methods from PDE theory, numerical analysis, signal processing, compressed sensing and machine learning, we will bridge this gap by developing a theory of sample complexity for inverse problems in PDE. This will allow for the deriving of a new mathematical theory of inverse problems for PDE under realistic assumptions, which will impact the implementation of many modalities, guiding the choice of priors and measurements. Consequently, emerging imaging modalities will become closer to actual usage. As a by-product, we will also derive new compressed sensing results which are valid for a general class of problems, including nonlinear and ill-posed, and sparsity constraints. Collaborations with experts in the relevant fields will ensure the project’s success.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.