RNA virus population diversity virulence attenuation and vaccine development
RNA viruses have the highest mutation frequencies in nature, which are in large part attributed to the low fidelity of their viral RNA-dependent RNA polymerases (RdRp). Explosive replication kinetics coupled with high mutation rat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
1toStopVax
RNA virus attenuation by altering mutational robustness
150K€
Cerrado
EUIN2015-62632
DINAMICAS DE POBLACIONES DE VIRUS DE RNA A ESCALA DE CELULAS...
10K€
Cerrado
VIRMUT
Variability in the mutation rate of RNA viruses
1M€
Cerrado
BFU2011-25271
VARIABILIDAD Y EVOLUCION DE LAS TASAS DE MUTACION EN VIRUS D...
175K€
Cerrado
PGC2018-099341-B-I00
CARACTERIZACION DE LA DINAMICA TRANSCRIPCIONAL DEL VIRUS DE...
191K€
Cerrado
BFU2015-65037-P
EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE...
379K€
Cerrado
Información proyecto RNAVIRUSPOPDIVNVAX
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
RNA viruses have the highest mutation frequencies in nature, which are in large part attributed to the low fidelity of their viral RNA-dependent RNA polymerases (RdRp). Explosive replication kinetics coupled with high mutation rates quickly generate highly diverse populations that have been observed for all RNA viruses. Recently, we have developed a model system to study the roles that RNA virus mutation rates and population heterogeneity play in virus fitness, virulence and pathogenesis in vivo. The system relies on altering the RdRp fidelity of poliovirus, thereby changing the amount of genetic diversity present in a population. We found that increasing or decreasing genetic diversity strongly attenuates the virus and may constitute a novel strategy to engineer live virus vaccines. However, the poliovirus infection model of transgenic mice presents significant limitations that do not permit more detailed studies of the mechanisms behind these observations. To further extend our preliminary results, we will develop two new infection models, to study the role of genetic diversity and population dynamics of RNA viruses infecting their hosts naturally. These models will be used to uncover the mechanisms by which genetic diversity is generated, the points in infection when it is critical and the specific bottlenecking events or subpopulations that are involved at these critical points. We will use new deep sequencing technology, coupled to concepts in population genetics, to develop new strategies for vaccine discovery based on the modulation of RNA virus populations.