Pursuing Efficient Reliability of Object Detection for automotive and aerospace...
Pursuing Efficient Reliability of Object Detection for automotive and aerospace applications
Autonomous vehicles are about to change completely the transportation systems, the automotive and military markets, and burst deep space exploration. However, while autonomous cars are expected to reduce of two-three orders of mag...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2008-03847
FIABILIDAD Y SEGURIDAD EN ROBOTICA AEREA
543K€
Cerrado
DPI2010-21762-C02-01
NAVEGACION Y CONTROL TOLERANTE A FALLOS DE UN ROBOT HIBRIDO...
12K€
Cerrado
RobustSENSE
Robust and Reliable Environment Sensing and Situation Predic...
9M€
Cerrado
RobustSENSE
Robust and Reliable Environment Sensing and Situation Predic...
9M€
Cerrado
TIN2016-81075-R
MECANISMOS DE ADAPTACION CONFIABLE PARA VEHICULOS AUTONOMOS...
97K€
Cerrado
TrueSbW
Fail-operational safety – making autonomous vehicles a reali...
4M€
Cerrado
Información proyecto PERIOD
Duración del proyecto: 31 meses
Fecha Inicio: 2020-03-05
Fecha Fin: 2022-10-15
Líder del proyecto
POLITECNICO DI TORINO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
171K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Autonomous vehicles are about to change completely the transportation systems, the automotive and military markets, and burst deep space exploration. However, while autonomous cars are expected to reduce of two-three orders of magnitude the number of traffic accidents and burst space exploration, the current self-driving systems are not yet compliant with ISO26262 dependability requirements to be adopted in large-scale and are not yet sufficiently reliable to be part of a space mission. In particular object detection, a critical task in autonomous vehicles, has been demonstrated to be highly undependable and to be responsible for the great majority of accidents in current self-driving cars prototypes. Pursuing Efficient Reliability of Object Detection for automotive and aerospace applications (PERIOD) challenge is to improve the dependability of object detection frameworks in an effective and efficient way. PERIOD aims at analyzing and proposing solutions to overcome the software and hardware dependability issues of object detection. By correlating computing architectures and software reliability analyses with the impact of faults in the vehicle behavior, PERIOD aims at reducing the probability of misdetection without the time, power, and cost overheads that make traditional fault-tolerance solutions unsuitable for automotive or aerospace real-time systems. The proposed action will enable a highly interdisciplinary collaboration between the experienced researcher, a talented associate professor with a significant track record in computer science and computer engineering, and the supervisor, a world leader in test, embedded systems, and computing architectures for automotive/space applications whose group is embedded systems in one of Europe’s leading research institutions.